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5-1 



What Are We Going to Learn? 

• Compared to 1D, major differences in 2D FEM formulation are 

• application of IBP. 

• master elements and shape functions for triangular and quadrilateral elements. 

• Jacobian transformation. 

• boundary integral evaluation. 
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 Triangular 
element 

 Quadrilateral 
element 



Model DE in 2D 

• Poisson equation in 2D is 
−𝛻 ⋅ 𝑎 𝛻𝑢 = 𝑓 

where 𝑎(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are known functions and 

             𝑢(𝑥, 𝑦) is the unknown. 

• For a problem in the 𝑥𝑦 plane of the Cartesian coordinate system, gradient operator is 

𝛻 =  𝑖 
𝜕

𝜕𝑥
+ 𝑗 

𝜕

𝜕𝑦
 

• In the 𝑥𝑦 plane Poisson equation becomes 

− 𝑖 
𝜕

𝜕𝑥
+ 𝑗 

𝜕

𝜕𝑦
⋅ 𝑎

𝜕𝑢

𝜕𝑥
𝑖 + 𝑎

𝜕𝑢

𝜕𝑦
𝑗 = 𝑓 

 

 

−
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
−

𝜕

𝜕𝑦
𝑎
𝜕𝑢

𝜕𝑦
= 𝑓 
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𝛻 𝑎 𝛻𝑢 



Model DE in 2D 

• If function 𝑎 is constant over the problem domain, Poisson eqn. becomes 

−𝑎𝛻 ⋅ 𝛻𝑢 = 𝑓              →              −𝛻2𝑢 = 𝑔            →            −
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥2
= 𝑔 

• Homogeneous form of this equation is called the Laplace’s equation 

−𝛻2𝑢 = 0            →            −
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥2
= 0 

• Poisson equation models many physical phenomena such as 

• potential flow 

• heat conduction 

• groundwater flow 

• transverse deflection of plates 

• electrostatics and magnetostatics 
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Obtaining Weak Form in 2D 

Model DE :        −
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
−

𝜕

𝜕𝑦
𝑎
𝜕𝑢

𝜕𝑦
= 𝑓 

• Weighted residual integral statement of this DE is 

 𝑤 −
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
−

𝜕

𝜕𝑦
𝑎
𝜕𝑢

𝜕𝑦
− 𝑓 𝑑Ω = 0

 

Ω

 

 

• 2nd order derivatives of 𝑢 can be reduced to 1st order using the following general 
equations 

 

 𝑤 
𝜕𝐹

𝜕𝑥
 𝑑Ω

 

Ω

  =   − 𝐹 
𝜕𝑤

𝜕𝑥
 𝑑Ω

 

Ω

  +    𝑤𝐹 𝑛𝑥𝑑Γ
 

Γ

 

 

 𝑤 
𝜕𝐹

𝜕𝑦
 𝑑Ω

 

Ω

  =   − 𝐹 
𝜕𝑤

𝜕𝑦
 𝑑Ω

 

Ω

  +    𝑤𝐹𝑛𝑦𝑑Γ
 

Γ
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Obtaining Weak Form in 2D 

 −𝑤
𝜕

𝜕𝑥
𝑎
𝜕𝑢

𝜕𝑥
− 𝑤

𝜕

𝜕𝑦
𝑎
𝜕𝑢

𝜕𝑦
− 𝑤𝑓 𝑑Ω = 0

 

Ω

 

 

 

 

 

 

 

 

 

• Elemental weak form is 
 

 𝑎
𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑦

𝜕𝑤

𝜕𝑦
𝑑Ω   =    𝑤𝑓 𝑑Ω

 

Ω𝑒

 

Ω𝑒
  +    𝑤 𝑎

𝜕𝑢

𝜕𝑥
𝑛𝑥 + 𝑎

𝜕𝑢

𝜕𝑦
𝑛𝑦 𝑑Γ

 

Γ𝑒
 

 

 
    where 𝑛𝑥 and 𝑛𝑦 are the Cartesian components of the unit outward normal of Γ𝑒. 
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 𝑎
𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑥
 𝑑Ω

 

Ω

  −    𝑤𝑎
𝜕𝑢

𝜕𝑥
𝑛𝑥 𝑑Γ

 

Γ

  𝑎
𝜕𝑢

𝜕𝑦

𝜕𝑤

𝜕𝑦
 𝑑Ω

 

Ω

  −    𝑤𝑎
𝜕𝑢

𝜕𝑦
𝑛𝑦 𝑑Γ

 

Γ

 

𝑞𝑛 :  SV of the problem 
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2D Formulation (cont’d) 

• Approximate solution over an element is 
 

𝑢𝑒 =  𝑢𝑗
𝑒 𝑆𝑗

𝑒(𝑥, 𝑦)

𝑁𝐸𝑁

𝑗=1

  

 

• For linear triangular and quadratic elements 𝑁𝐸𝑁 is 3 and 4, respectively. 

 3-node triangular 
element 
𝑁𝐸𝑁 = 3 

 4-node quadrilateral 
element 
𝑁𝐸𝑁 =4 
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2D Formulation (cont’d) 

• To get the 𝑖𝑡ℎ equation of element e 

• substitute approximate 𝑢𝑒 into the elemental weak form and 

• select 𝑤 = 𝑆𝑖
𝑒  

 

 𝑎
𝜕

𝜕𝑥
 𝑢𝑗

𝑒𝑆𝑗
𝑒

𝑁𝐸𝑁

𝑗=1

𝜕𝑆𝑖
𝑒

𝜕𝑥
+

𝜕

𝜕𝑦
 𝑢𝑗

𝑒𝑆𝑗
𝑒

𝑁𝐸𝑁

𝑗=1

𝜕𝑆𝑖
𝑒

𝜕𝑦
𝑑Ω 

 

Ω𝑒
 =   𝑆𝑖

𝑒𝑓 𝑑Ω
 

Ω𝑒
 +   𝑆𝑖

𝑒 𝑞𝑛𝑑Γ
 

Γ𝑒
 

 
• Arrange to get 

 

  𝑎
𝜕𝑆𝑗

𝑒

𝜕𝑥

𝜕𝑆𝑖
𝑒

𝜕𝑥
+

𝜕𝑆𝑗
𝑒

𝜕𝑦

𝜕𝑆𝑖
𝑒

𝜕𝑦
𝑑Ω

 

Ω𝑒
𝑢𝑗

𝑒

𝑁𝐸𝑁

𝑗=1

 =   𝑆𝑖
𝑒𝑓 𝑑Ω

 

Ω𝑒
 +   𝑆𝑖

𝑒  𝑞𝑛𝑑Γ
 

Γ𝑒
 

 

 
𝐾𝑖𝑗

𝑒  𝐹𝑖
𝑒 𝑄𝑖

𝑒 
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2D Formulation (cont’d) 

• 𝑁𝐸𝑁 × 𝑁𝐸𝑁 elemental system is 

𝐾𝑒 𝑢𝑒 = 𝐹𝑒 + {𝑄𝑒} 

 

 

 

 

 

• To evaluate these integrals  

• triangular and quadrilateral master elements will be introduced. 

• shape functions will be written in master element coordinates. 

• 2D Jacobian transformation will be used. 

• GQ integration will be used. 

 

𝐾𝑖𝑗
𝑒 =  𝑎

𝜕𝑆𝑗
𝑒

𝜕𝑥

𝜕𝑆𝑖
𝑒

𝜕𝑥
+

𝜕𝑆𝑗
𝑒

𝜕𝑦

𝜕𝑆𝑖
𝑒

𝜕𝑦
𝑑Ω

 

Ω𝑒
 𝐹𝑖

𝑒 =  𝑆𝑖
𝑒𝑓 𝑑Ω

 

Ω𝑒
 𝑄𝑖

𝑒 =  𝑆𝑖
𝑒 𝑞𝑛𝑑Γ

 

Γ𝑒
 



 

 

 

 

 

 

 

 

 
 

• Master quadrilateral element is a square of size 2x2. 

• Its nodes are always numbered in a CCW order starting with (-1,-1) corner. 

• Nodes of the actual element are also numbered in CCW order. It does NOT matter 
which node is selected as the first one. 
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2D Quadrilateral Master Element 

 3 

 4 

 1 

 2 

𝑥 

𝑦 

Actual quadrilateral element  

 1  2 

 3  4 
𝜉 

𝜂 

Master quadrilateral element  

 (-1,-1)  (1,-1) 

 (-1,1)  (1,1) 



• General form of Lagrange type 2D shape functions over a 4-node quadrilateral 
element is 

𝑆 = 𝐴 + 𝐵𝜉 + 𝐶𝜂 + 𝐷𝜉𝜂 

• Unknown constants 𝐴, 𝐵, 𝐶 and 𝐷 can be found using the fact that shape functions 
satisfy the Kronecker-Delta property 

𝑆𝑗 𝜉𝑖 , 𝜂𝑖 =    
1      if   𝑖 = 𝑗
 0      if   𝑖 ≠ 𝑗

 

 

 
• Shape functions are 
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Shape Functions of 2D Quadrilateral Master Element 

 1  2 

 3  4 

𝜉 

𝜂 
𝑆1 =

1

4
(1 − 𝜉)(1 − 𝜂) 

𝑆2 =
1

4
(1 + 𝜉)(1 − 𝜂) 

𝑆3 =
1

4
(1 + 𝜉)(1 + 𝜂) 

𝑆4 =
1

4
(1 − 𝜉)(1 + 𝜂) 



 

 

 

 

 

 

 

 

 

 

• Master triangular element is a right triangle with an area of 0.5. 

• Its nodes are always numbered in a CCW order, starting with (0,0) corner. 
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2D Triangular Master Element 

 3 

 1 

 2 

𝑥 

𝑦 

Actual triangular element  

 1  2 

 3 

𝜉 

𝜂 

 (0,0)  (1,0) 

Master triangular element  

 (0,1) 



• General form of Lagrange type 2D shape functions over a 3-node triangular element is 

𝑆 = 𝐴 + 𝐵𝜉 + 𝐶𝜂 

• Unknown constants 𝐴, 𝐵 and 𝐶 can be found using the Kronecker-Delta property of 
the shape functions 

 

 

• Shape functions are 
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Shape Functions of 2D Triangular Master Element 

𝑆1 =  1 − 𝜉 − 𝜂 
  

𝑆2 = 𝜉 
 

𝑆3 = 𝜂 

 1  2 

 3 

𝜉 

𝜂 



• 𝜕𝑆/𝜕𝑥 and 𝜕𝑆/𝜕𝑦 derivatives appear in the integrals of Slide 5-9. 

• These derivatives need to be expressed in terms of 𝜕𝑆/𝜕𝜉 and 𝜕𝑆/𝜕𝜂 derivatives. 

• This requires the transformation between (𝑥, 𝑦) and (𝜉, 𝜂) coordinates. 
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Jacobian Transformation in 2D 

 3 

 4 

 1 

 2 

𝑥 

𝑦 

Actual  element in (𝑥, 𝑦)  

 1  2 

 3  4 

𝜉 

𝜂 

Master element in (𝜉, 𝜂) 

𝑥 = 𝑥(𝜉, 𝜂) 
 

𝑦 = 𝑦(𝜉, 𝜂) 
 



• Remember that in 1D 𝑥(𝜉) relation was 

𝑥 =
ℎ𝑒

2
𝜉 +

𝑥1
𝑒 + 𝑥2

𝑒

2
 

• This relation can also be expressed as 

𝑥 =  𝑥𝑗
𝑒 𝑆𝑗

𝑁𝐸𝑁

𝑗=1

           →              𝑥 =
1 − 𝜉

2
𝑥1

𝑒 +
1 + 𝜉

2
𝑥2

𝑒 

• This works due to the Kronecker-Delta property of the shape functions 

• 𝜉 = −1 is mapped to 𝑥 = 𝑥1
𝑒 

• 𝜉 = 1 is mapped to 𝑥 = 𝑥2
𝑒 

 

• Same logic can also be used in 2D to get 𝑥(𝜉, 𝜂) and 𝑥(𝜉, 𝜂) relations. 
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Jacobian Transformation in 2D (cont’d) 



𝑥 =  𝑥𝑗
𝑒 𝑆𝑗

𝑁𝐸𝑁

𝑗=1

           and           𝑦 =  𝑦𝑗
𝑒 𝑆𝑗

𝑁𝐸𝑁

𝑗=1

 

• These can be used for both quadrilateral and triangular elements. 

• 𝑥𝑗
𝑒 and 𝑦𝑗

𝑒 are the coordinates of the corner points of the elements. 

 

 

Example 5.1: Obtain 𝑥(𝜉, 𝜂) and 𝑦(𝜉, 𝜂) relations for the following element. 
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Jacobian Transformation in 2D (cont’d) 

e.g. 

 3 

 1 
 2 

𝑥 

𝑦 
Corner coordinates are 

Corner 1 : (5, 6) 
Corner 2 : (0, 7) 
Corner 3 : (2, 0) 



𝑥 =  𝑥𝑗
𝑒 𝑆𝑗

3

𝑗=1

    =     5 1 − 𝜉 − 𝜂 + 0 𝜉 + 2 𝜂 = 5 − 5𝜉 − 3𝜂 

𝑦 =  𝑦𝑗
𝑒 𝑆𝑗

3

𝑗=1

    =     6 1 − 𝜉 − 𝜂 + 7 𝜉 + 0 𝜂 = 6 + 𝜉 − 6𝜂 

 

• Every point on the master element can be mapped to 

a point on the actual element using these relations. 

• For example point P with 𝜉, 𝜂 = (0.5, 0.5) maps to 

𝑥 = 5 − 5 0.5 − 3 0.5 =1 

𝑦 = 6 + 0.5 − 6 0.5 = 3.5 

• Both points P and Q are the mid-points of the 

faces opposite to node 1. 
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Example 5.1 (cont’d) 

 3 

 1 
 2 

𝑥 

𝑦 
 1  2 

 3 

𝜉 

𝜂 

 P(0.5,0.5) 

 Q(1,3.5) 



• With the link between (𝑥, 𝑦) and (𝜉, 𝜂) coordinates, 𝜕𝑆/𝜕𝑥 and 𝜕𝑆/𝜕𝑦 derivatives can 
be linked to 𝜕𝑆/𝜕𝜉 and 𝜕𝑆/𝜕𝜂. 
 

𝜕𝑆

𝜕𝜉
=

𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝜉
+

𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝜉
 

 

𝜕𝑆

𝜕𝜂
=

𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝜂
+

𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝜂
 

 

 

• In 1D Jacobian was 𝐽𝑒 =
𝑑𝑥

𝑑𝜉
 . 

• In 2D Jacobian is a matrix. 

• In general [𝐽𝑒] is different for each element of the FE mesh. 
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Jacobian Transformation in 2D (cont’d) 

→               

𝜕𝑆

𝜕𝜉
𝜕𝑆

𝜕𝜂

=

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑆

𝜕𝑥
𝜕𝑆

𝜕𝑦

 

Jacobian matrix 
[𝐽𝑒] 



• For the integrals of slide 5-9 what we actually need is 

𝜕𝑆

𝜕𝑥
𝜕𝑆

𝜕𝑦

=

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑥
𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝑆

𝜕𝜉
𝜕𝑆

𝜕𝜂

 

 

 

 

• Since we know 𝑥 and 𝑦 as a function of 𝜉 and 𝜂, but not the other way, it is NOT 
practical to calculate 𝐽𝑒 −1 directly. 

• Instead we first calculate 𝐽𝑒  and then take its inverse. 

 

METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 5-19 

Jacobian Transformation in 2D (cont’d) 

Inverse of the 
Jacobian matrix 

𝐽𝑒 −1 



Example 5.2: Obtain [𝐽𝑒] and 𝐽𝑒 −1 of the element that we studied in exercise 5.1. 

 

 

 

 

 

 

𝐽𝑒 =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=

 𝑥𝑗
𝑒
𝜕𝑆𝑗

𝜕𝜉
 𝑦𝑗

𝑒
𝜕𝑆𝑗

𝜕𝜉

 𝑥𝑗
𝑒
𝜕𝑆𝑗

𝜕𝜂
 𝑦𝑗

𝑒
𝜕𝑆𝑗

𝜕𝜂

=

𝜕𝑆1

𝜕𝜉

𝜕𝑆2

𝜕𝜉

𝜕𝑆3

𝜕𝜉
𝜕𝑆1

𝜕𝜂

𝜕𝑆2

𝜕𝜂

𝜕𝑆3

𝜕𝜂

𝑥1
𝑒 𝑦1

𝑒

𝑥2
𝑒 𝑦2

𝑒

𝑥3
𝑒 𝑦3

𝑒
 

• This general 𝐽𝑒  calculation formula applies to both triangular and quadrilateral 
elements. 
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Example 5.2 

e.g. 

 3 

 1 
 2 

𝑥 

𝑦 

Corner coordinates are 

Corner 1 : (5, 6) 
Corner 2 : (0, 7) 
Corner 3 : (2, 0) 



• For a triangular element shape functions are 

𝑆1 = 1 − 𝜉 − 𝜂     ,        𝑆2 = 𝜉   ,         𝑆3 = 𝜂 

• For a triangular element derivatives of the shape functions are 

𝜕𝑆1

𝜕𝜉

𝜕𝑆2

𝜕𝜉

𝜕𝑆3

𝜕𝜉
𝜕𝑆1

𝜕𝜂

𝜕𝑆2

𝜕𝜂

𝜕𝑆3

𝜕𝜂

=
−1 1 0
−1 0 1

 

• Jacobian of the element is 

𝐽𝑒 =
−1 1 0
−1 0 1

5 6
0 7
2 0

=
−5 1
−3 −6
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Example 5.2 (cont’d) 



• Inverse of the Jacobian matrix is 

𝐽𝑒 −1 =
1

𝐽𝑒
𝐽22
𝑒 −𝐽12

𝑒

−𝐽21
𝑒 𝐽11

𝑒  

 

 

 

𝐽𝑒 −1 =
1

33
−6 −1
3 −5

=
−0.182 0.030
0.091 −0.152

 

 

• Note that in 1D 𝐽𝑒 was equal to the ratio of actual element’s length to master 
element’s length. 

• Similarly for a 3-node triangular element 𝐽𝑒  is equal to the ratio of actual element’s 
area to master element’s area. In this exercise the area ratio is 16.5/(0.5) = 33 . 
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Example 5.2 (cont’d) 

𝐽𝑒 = 𝐽11
𝑒 𝐽22

𝑒 − 𝐽12
𝑒 𝐽21

𝑒  

= −5 −6 − 1 −3 = 33 



Example 5.3: Obtain [𝐽𝑒] and 𝐽𝑒  of the element shown below. 

 

 

 

 

 

 

𝐽𝑒 =

𝜕𝑆1

𝜕𝜉

𝜕𝑆2

𝜕𝜉

𝜕𝑆3

𝜕𝜉

𝜕𝑆4

𝜕𝜉
𝜕𝑆1

𝜕𝜂

𝜕𝑆2

𝜕𝜂

𝜕𝑆3

𝜕𝜂

𝜕𝑆4

𝜕𝜂

𝑥1
𝑒 𝑦1

𝑒

𝑥2
𝑒 𝑦2

𝑒

𝑥3
𝑒 𝑦3

𝑒

𝑥4
𝑒 𝑦4

𝑒

=

𝜂 − 1

4

1 − 𝜂

4

𝜂 + 1

4

−1 − 𝜂

4
𝜉 − 1

4

−𝜉 − 1

4

𝜉 + 1

4

1 − 𝜉

4

5 6
0 7
0 0
2 0
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Example 5.3 

e.g. 

 4 

 1 

 2 

𝑥 

𝑦 
Corner coordinates are 

Corner 1 : (5, 6) 
Corner 2 : (0, 7) 
Corner 3 : (0, 0) 
Corner 4 : (2, 0) 

 3 



𝐽𝑒 =
1

4

3𝜂 − 7 −𝜂 + 1
3𝜉 − 3 −𝜉 − 13

 

• Determinant of 𝐽𝑒  is 

𝐽𝑒 = 𝐽11
𝑒 𝐽22

𝑒 − 𝐽12
𝑒 𝐽21

𝑒 =
1

8
2𝜉 − 21𝜂 + 47  

• Note that this time both the Jacobian matrix and its determinant are functions of 𝜉 
and 𝜂. 

• Integral of 𝐽𝑒  over the master element will give the area of the actual element. 

   
1

8
2𝜉 − 21𝜂 + 47

𝐽𝑒

 𝑑𝜉
1

𝜉=−1

𝑑𝜂
1

𝜂=−1

= 23.5 

• This can be generalized as follows which will be used in GQ integration 

 𝑑𝑥𝑑𝑦
 

Ω

=  𝐽𝑒 𝑑𝜉𝑑𝜂
 

Ω𝑒
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Example 5.3 (cont’d) 

(True for both triangular and 
quadrilateral elements) 

Actual element’s 
area 



• Now the integrals of Slide 5-9 can be evaluated on a master element using GQ. 

𝐾𝑖𝑗
𝑒 =  𝑎

𝜕𝑆𝑗
𝑒

𝜕𝑥

𝜕𝑆𝑖
𝑒

𝜕𝑥
+

𝜕𝑆𝑗
𝑒

𝜕𝑦

𝜕𝑆𝑖
𝑒

𝜕𝑦
 𝑑Ω   ,    

 

Ω𝑒
   𝐹𝑖

𝑒 =  𝑆𝑖
𝑒𝑓 𝑑Ω

 

Ω𝑒
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Calculation of Integrals Over a Master Element 

Use 𝑥 =  𝑥𝑗
𝑒𝑆𝑗 and 

𝑦 =  𝑦𝑗
𝑒𝑆𝑗 to convert 

𝑥 and 𝑦 of function 𝑎 
to 𝜉 and 𝜂. 
 
Same for 𝑓 of 𝐹𝑖

𝑒. 

𝜕𝑆𝑒

𝜕𝑥
=

𝜕𝑆

𝜕𝜉

𝜕𝜉

𝜕𝑥
+

𝜕𝑆

𝜕𝜂

𝜕𝜂

𝜕𝑥
 

 

=
𝜕𝑆

𝜕𝜉
𝐽𝑒 11

−1 +
𝜕𝑆

𝜕𝜂
𝐽𝑒 12

−1 

𝜕𝑆𝑒

𝜕𝑦
=

𝜕𝑆

𝜕𝜉

𝜕𝜉

𝜕𝑦
+

𝜕𝑆

𝜕𝜂

𝜕𝜂

𝜕𝑦
 

 

=
𝜕𝑆

𝜕𝜉
𝐽𝑒 21

−1 +
𝜕𝑆

𝜕𝜂
𝐽𝑒 22

−1 

 𝑑𝑥𝑑𝑦
 

Ω𝑒
=  𝐽𝑒 𝑑𝜉𝑑𝜂

 

Ω𝑚𝑎𝑠𝑡𝑒𝑟
𝑒

 



• For a quadrilateral master element both 𝜉 and 𝜂 change between -1 and 1. 

• [-1, 1] are the limits used in 1D GQ integration. 

• Therefore for 2D quadrilateral elements 1D GQ tables can be used. 

 

• Consider the evaluation of the following integral using NGP points in both 𝜉 and 𝜂 
directions. 

𝐼 =   𝑔 𝑑𝜉
1

𝜉=−1

𝑑𝜂
1

𝜂=−1

 

 

𝐼 =    𝑔 𝜉𝑚, 𝜂𝑛 𝑊𝑚𝑊𝑛

𝑁𝐺𝑃

𝑚=1

𝑁𝐺𝑃

𝑛=1

              or               𝐼 =  𝑔 𝜉𝑘 , 𝜂𝑘 𝑊𝑘

𝑁𝐺𝑃2

𝑘=1
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Gauss Quadrature Over Quadrilateral Elements 

Sum for 𝜂 

Sum for 𝜉 
Combined sum 

for 𝜉 and 𝜂 

𝑊𝑘 = 𝑊𝑚𝑊𝑛 

In 2D there are 𝑁𝐺𝑃2 
GQ points 
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Gauss Quadrature Over Quadrilateral Elements (cont’d) 

1D GQ Integration 

NGP 𝝃𝒌 𝑾𝒌 

1 0.0 2 

2 
−1/ 3 

1/ 3 

1 

1 

3 
− 0.6 

0.0 

0.6 

5/9 

8/9 

5/9 

2D GQ Integration Over Quads 

NGP 𝝃𝒌 𝜼𝒌 𝑾𝒌 

1 0.0 0.0 4 

4 

−1/ 3 

1/ 3 

−1/ 3 

1/ 3 

−1/ 3 

−1/ 3 

1/ 3 

1/ 3 

1 

1 

1 

1 

9 

− 0.6 
0.0 

0.6 

− 0.6 
0.0 

0.6 

− 0.6 
0.0 

0.6 

− 0.6 

− 0.6 

− 0.6 
0.0 
0.0 
0.0 

0.6 

0.6 

0.6 

25/81 

40/81 

25/81 

40/81 

64/81 

40/81 

25/81 

40/81 

25/81 

7 

𝜉 

𝜂 

1 2 3 

4 5 6 

8 9 
9 point GQ 

over a quad. 
element 



• For a triangular master element limits for 𝜉 and 𝜂 are [0, 1] and [0, 1-𝜉], respectively. 

 𝑓 𝑑𝜉𝑑𝜂
 

Ω𝑒
=   𝑓 𝑑𝜂𝑑𝜉

1−𝜉

𝜂=0

1

𝜉=0

 

 

• Therefore a new GQ table is necessary. 
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Gauss Quadrature Over Triangular Elements 

2D GQ Integration Over Triangles 

NGP 𝝃𝒌 𝜼𝒌 𝑾𝒌 

1 1/3 1/3 0.5 

3 
0.5 
0.0 
0.5 

0.0 
0.5 
0.5 

1/6 
1/6 
1/6 

4 

1/3 
0.6 
0.2 
0.2 

1/3 
0.2 
0.6 
0.2 

- 27/96 
25/96 
25/96 
25/96 

 1 

𝜉 

𝜂 

 2 

 3 

4 

4 point GQ over 
a triangular 

element 
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Example 5.4 

Example 5.4: Calculate the first entry of the following elemental force vector 

𝐹𝑖
𝑒 =  𝑥2𝑆𝑖  𝑑𝑥𝑑𝑦

 

Ω𝑒
 

over the following element using 4 point GQ integration. 

 

e.g. 

 3 4 

 1 𝑥 

𝑦 

 2 

Corner coordinates are 

Corner 1 : (0, 0) 
Corner 2 : (5, 0) 
Corner 3 : (3, 2) 
Corner 4 : (0, 2) 
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Example 5.4 (cont’d) 

• We need to calculate 

𝐹1
𝑒 =  𝑥2𝑆1 𝑑𝑥𝑑𝑦

 

Ω𝑒
 

• Switching to master element coordinates the integral becomes 

𝐹1
𝑒 =   𝑥 𝜉, 𝜂 2    

1

4
(1 − 𝜉)(1 − 𝜂)

𝑆1

  𝐽𝑒 𝑑𝜉𝑑𝜂
𝑑𝑥𝑑𝑦

1

−1

1 

−1

 

 

• We first need 𝑥 as a function of 𝜉 and 𝜂. 

𝑥 =  𝑥𝑗
𝑒 𝑆𝑗

4

𝑗=1

= 0 𝑆1 + 5 𝑆2 + 3 𝑆3 + 0 𝑆4 

𝑥 = 5
1

4
1 + 𝜉 1 − 𝜂 + 3

1

4
1 + 𝜉 1 + 𝜂  

𝑥 =
1

2
(4 + 4𝜉 − 𝜂 − 𝜉𝜂) 
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Example 5.4 (cont’d) 

• Next we need to calculate the Jacobian and its determinant (similar to Slide 5-23) 

 

𝐽𝑒 =

𝜂 − 1

4

1 − 𝜂

4

𝜂 + 1

4

−1 − 𝜂

4
𝜉 − 1

4

−𝜉 − 1

4

𝜉 + 1

4

1 − 𝜉

4

0 0
5 0
3 2
0 2

=

4 − 𝜂

2
0

−1 − 𝜉

2
1

 

 

𝐽𝑒 =
4 − 𝜂

2
1 −

−1 − 𝜉

2
0 =

4 − 𝜂

2
 

• The integral becomes 

𝐹1
𝑒 =    

1

2
4 + 4𝜉 − 𝜂 − 𝜉𝜂

21

4
1 − 𝜉 1 − 𝜂

4 − 𝜂

2
𝑔(𝜉,𝜂)

 𝑑𝜉𝑑𝜂
1

−1

1 

−1

 

 

𝐹1
𝑒 =   𝑔 𝑑𝜉𝑑𝜂

1

−1

1 

−1
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Example 5.4 (cont’d) 

• 4 point GQ over the quadrilateral master element will be 

𝐹1
𝑒 = 𝑔 𝜉1, 𝜂1 𝑊1 + 𝑔 𝜉2, 𝜂2 𝑊2 + 𝑔 𝜉3, 𝜂3 𝑊3 + 𝑔 𝜉4, 𝜂4 𝑊4 

      where points and weights are provided in Slide 5-27 

• The result will be 

𝐹1
𝑒 = 1.3320 + 4.971 + 0.1492 + 0.5569 = 6.9993 

 

Notes: 

• In general 𝐽𝑒  is a function of 𝜉 and 𝜂 and it needs to be evaluated at GQ points. 

• In this example we did not need 𝑦(𝜉, 𝜂) bacause 𝑓 was not a function of 𝑦. 

• In this example we did not calculate the inverse of 𝐽𝑒  because force vector does not 
contain shape function derivatives. Stiffness matrix calculation will need it. 
 

• Is the above result exact? What is the exact value? What will 1 point and 9 point 
integrations give? 
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Calculation of 𝑄  

• {𝑄} integrals need to be evaluated only for the real boundary faces where NBC or MBC 
is specified. 

• Consider the following problem with a mesh of 3 elements and 6 nodes. 

e=2 

e=3 

e=1 

1 2 3 

4 5 

6 

EBC 

NBC 

NBC 
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Calculation of 𝑄  (cont’d) 

• There are 4 elements faces at NBC or MBC boundaries. 

• The assembled global {𝑄} will be (first local node 
of each element is shown, the others are located 
in a CCW order) 

𝑄 =

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5

𝑄6

=

𝑄1
1

𝑄2
1 + 𝑄1

2

𝑄2
2

𝑄4
1 + 𝑄1

3

𝑄3
1 + 𝑄3

2 + 𝑄2
3

𝑄2
3

 

 

• Note : In this example we do not have an internal node (a node that is not located at a 
boundary), but for those nodes sum of 𝑄𝑖

𝑒 ’s will be zero. 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 

NBC 

NBC 

1 1 

1 

• 𝑄3, 𝑄5 and 𝑄6 are not necessary 
because PVs are known at these 
nodes. 

• Only the circled ones are necessary. 
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Calculation of 𝑄  (cont’d) 

• For the Poisson equation {𝑄𝑒} is calculated as (Slide 5-9) 

𝑄𝑖
𝑒 =  𝑆𝑖  𝑞𝑛 𝑑𝑠

 

Γ𝑒
 

 

 

• Γ𝑒 is the boundary of the element and it is composed of 𝑁𝐸𝑁 straight lines. 

• For a triangular element the integral can be decomposed into 3 parts. 

𝑄𝑖
𝑒 =  𝑆𝑖𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆𝑖𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆𝑖𝑞𝑛 𝑑𝑠
 

𝑓3

 

 

 

𝑞𝑛 = 𝑎
𝜕𝑢

𝜕𝑥
𝑛𝑥 + 𝑎

𝜕𝑢

𝜕𝑦
𝑛𝑦  

e 

1 

3 

2 
= + + 

1 

2 

3 

2 
1 

3 

𝑠 
𝑠 

𝑠 

𝑓3 : Face 3 
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Calculation of 𝑄  (cont’d) 

• Consider the 3 element problem of Slide 5-34. 

• We need 𝑄1
1, 𝑄2

1, 𝑄4
1, 𝑄1

2, 𝑄1
3  

 

• e=1 : 

𝑄1
1 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓3

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓4

 

 

𝑄2
1 =  𝑆2𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆2𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆2𝑞𝑛 𝑑𝑠
 

𝑓3

+  𝑆2𝑞𝑛 𝑑𝑠
 

𝑓4

 

 

𝑄4
1 =  𝑆4𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆4𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆4𝑞𝑛 𝑑𝑠
 

𝑓3

+  𝑆4𝑞𝑛 𝑑𝑠
 

𝑓4

 

 

𝑆1 is zero on faces 2 and 3 

𝑆2 is zero on faces 3 and 4 

𝑆4 is zero on faces 1 and 2 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 

NBC 

NBC 

1 1 

1 

No need (f2 is internal) 

No need (f3 is internal) 
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Calculation of 𝑄  (cont’d) 

• e=2 : 

𝑄1
2 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓3

 

 

• e=3 : 

𝑄1
3 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓2

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓3

 

 

 

 

• Conclusion : Boundary integrals need to be calculated only for real boundary faces 
where NBC or MBC is provided. 

𝑆1 is zero on face 2 

𝑆1 is zero on face 2 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 

NBC 

NBC 

1 1 

1 

No need (f3 is 
internal) 

No need (f1 is 
internal) 
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Calculation of 𝑄  (cont’d) 

• Consider the common and simple case of 𝑞𝑛 = constant. 

• Let’s study the calculation of 

𝑄1
1 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓4

 

• 𝑆1 is a 2D shape function but it reduces to a first order 
function over faces 1 and 4 of element 1. 

 

 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

NBC, 𝑞𝑛 = 𝑞𝐵  

1 1 

1 

1 

f1 

f4 

1 2 

4 3 

f1 1 2 

𝑆1 = 1 −
𝑠

𝐿𝑓1
1  

𝑠 

𝐿𝑓1
1  

f4 4 1 

𝑆1 =
𝑠

𝐿𝑓4
1  

𝑠 

𝐿𝑓4
1  
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Calculation of 𝑄  (cont’d) 

𝑄1
1 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓4

 

𝑄1
1 =  1 −

𝑠

𝐿𝑓1
1 𝑞𝐵 𝑑𝑠

 𝐿𝑓1
1

𝑠=0

+  
𝑠

𝐿𝑓4
1 𝑞𝐿 𝑑𝑠

𝐿𝑓4
1  

𝑠=0

 

 

𝑄1
1 =

𝑞𝐵

2
𝐿𝑓1
1 +

𝑞𝐿

2
𝐿𝑓4
1  

• Same procedure can be followed to calculate 𝑄2
1. 

𝑄2
1 =  𝑆2𝑞𝑛 𝑑𝑠

 

𝑓1

 

𝑄2
1 =  

𝑠

𝐿𝑓1
1 𝑞𝐵 𝑑𝑠

 

𝑓1

 

 

𝑄2
1 =

𝑞𝐵

2
𝐿𝑓1
1  

 

 

 

1 

f1 

f4 

1 2 

4 3 

f1 1 2 

𝑆1 =
𝑠

𝐿𝑓1
1  

𝑠 

𝐿𝑓1
1  
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Calculation of 𝑄  (cont’d) 

• Calculation of 𝑄4
1, 𝑄1

2 and 𝑄1
3 follow the same procedure. 

𝑄4
1 =

𝑞𝐿

2
𝐿𝑓4
1         ,  𝑄1

2 =
𝑞𝐵

2
𝐿𝑓1
2        ,  𝑄1

3 =
𝑞𝐿

2
𝐿𝑓3
3  

 

• Summary : 

• From the bottom face of e=1, amount of provided SV 

is 𝑞𝐵𝐿𝑓1
1  and it is divided equally to 𝑄1

1 and 𝑄2
1. 

• From the bottom face of e=2, amount of provided SV 

is 𝑞𝐵𝐿𝑓1
2  and it is divided equally to 𝑄1

2 and 𝑄2
2. 

• From the left face of e=1, amount of provided SV 

is 𝑞𝐿𝐿𝑓4
1  and it is divided equally to 𝑄1

1 and 𝑄4
1. 

• From the left face of e=3, amount of provided SV 

is 𝑞𝐿𝐿𝑓3
3  and it is divided equally to 𝑄1

3 and 𝑄3
3. 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 

𝑞𝐵𝐿𝑓1
1

2
  

1 1 

1 

𝑞𝐵𝐿𝑓1
2

2
  

𝑞𝐿𝐿𝑓4
1

2
  

𝑞𝐿𝐿𝑓3
3

2
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Calculation of 𝑄  (cont’d) 

• Assembled {𝑄} vector is 

 

𝑄 =

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5

𝑄6

=

𝑞𝐵

2
𝐿𝑓1
1 +

𝑞𝐿

2
𝐿𝑓4
1

𝑞𝐵

2
𝐿𝑓1
1 +

𝑞𝐵

2
𝐿𝑓1
2

𝑄3
𝑞𝐿

2
𝐿𝑓4
1 +

𝑞𝐿

2
𝐿𝑓3
3

𝑄5

𝑄6

 

 

• Note that it is not possible to evaluate 𝑄3, 𝑄5 and 𝑄6 exactly, and these are not 
necessary due to given EBC for 𝑢3, 𝑢5 and 𝑢6. 

 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

NBC, 𝑞𝑛 = 𝑞𝐵  

1 1 

1 
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Calculation of 𝑄  (cont’d) 

• Question : What if 𝑞𝑛 is not constant at an NBC boundary? 

• Answer : Just evaluate the line integrals with the given variable 𝑞𝑛. 

 

• Question : What if the BC is not NBC but MBC? Consider the following case where 
bottom BC is MBC with constant 𝛼 and 𝛽. 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

MBC, 𝑞𝑛 = 𝛼𝑢 + 𝛽 

1 1 

1 



𝑄1
1 =  𝑆1𝑞𝑛 𝑑𝑠

 

𝑓1

+  𝑆1𝑞𝑛 𝑑𝑠
 

𝑓4
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Calculation of 𝑄  (cont’d) 

 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

MBC, 𝑞𝑛 = 𝛼𝑢 + 𝛽 

1 1 

1 
Same as 
before 

 1 −
𝑠

𝐿𝑓1
1 𝛼𝑢𝑓1

1 + 𝛽  𝑑𝑠
 

𝑓1

 

𝑢𝑓1
1 = 1 −

𝑠

𝐿𝑓1
1 𝑢1

1 +
𝑠

𝐿𝑓1
1 𝑢2

1 

 

𝑢𝑓1
1 = 𝑢1

1 +
𝑢2

1 − 𝑢1
1

𝐿𝑓1
1 𝑠 

f1 1 2 

𝑆1 
𝑠 

𝐿𝑓1
1  

𝑢1
1 

𝑢2
1 𝑢𝑓1

1  

=
𝑞𝐿

2
𝐿𝑓4
1  



𝑄1
1 =  1 −

𝑠

𝐿𝑓1
1 𝛼 𝑢1

1 +
𝑢2

1 − 𝑢1
1

𝐿𝑓1
1 𝑠 + 𝛽 𝑑𝑠

 𝐿𝑓1
1

𝑠=0

+
𝑞𝐿

2
𝐿𝑓4
1  

 

𝑄1
1  =  

𝛽

2
𝐿𝑓1
1 +

𝛼𝐿𝑓1
1

3
𝑢1

1 +
𝛼𝐿𝑓1

1

6
𝑢2

1    +    
𝑞𝐿

2
𝐿𝑓4
1  

 

 

 

 

• To calculate 𝑄2
1 a similar integral is evaluated but this time with 𝑆2. 

𝑄2
1 =  

𝑠

𝐿𝑓1
1 𝛼 𝑢1

1 +
𝑢2

1 − 𝑢1
1

𝐿𝑓1
1 𝑠 + 𝛽 𝑑𝑠

 𝐿𝑓1
1

𝑠=0

 

 

𝑄2
1  =  

𝛽

2
𝐿𝑓1
1 +

𝛼𝐿𝑓1
1

6
𝑢1

1 +
𝛼𝐿𝑓1

1

3
𝑢2

1 
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Calculation of 𝑄  (cont’d) 

 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

MBC, 𝑞𝑛 = 𝛼𝑢 + 𝛽 

1 1 

1 

Contribution of the MBC 
of the bottom face 

Contribution of the 
NBC of the left face 



• Calculation of 𝑄1
2 is just the same as 𝑄1

1. 

𝑄1
2  =  

𝛽

2
𝐿𝑓1
2 +

𝛼𝐿𝑓1
2

3
𝑢1

2 +
𝛼𝐿𝑓1

2

6
𝑢2

2 

 

 

• Assembled {𝑄} is 

 

𝑄 =

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5

𝑄6

=

𝛽

2
𝐿𝑓1
1 +

𝛼𝐿𝑓1
1

3
𝑢1

1 +
𝛼𝐿𝑓1

1

6
𝑢2

1 +
𝑞𝐿

2
𝐿𝑓4
1

𝛽

2
𝐿𝑓1
1 +

𝛼𝐿𝑓1
1

6
𝑢1

1 +
𝛼𝐿𝑓1

1

3
𝑢2

1 +
𝛽

2
𝐿𝑓1
2 +

𝛼𝐿𝑓1
2

3
𝑢1

2 +
𝛼𝐿𝑓1

2

6
𝑢2

2

𝑄3
𝑞𝐿

2
𝐿𝑓4
1 +

𝑞𝐿

2
𝐿𝑓3
3

𝑄5

𝑄6
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Calculation of 𝑄  (cont’d) 

2 

3 

1 

1 2 3 

4 5 

6 

EBC 
NBC 

𝑞𝑛 = 𝑞𝐿 

MBC, 𝑞𝑛 = 𝛼𝑢 + 𝛽 

1 1 

1 

Circled terms 
need to be 
transferred to 
the [𝐾] 
matrix. So it is 
better to 
write them 
using global 
indices. 
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Example 5.5 

Example 5.5: Determine the temperture distribution over the following 2D 
geometry. Obtain unknown nodal temperatures. Thermal conductivity of the 
medium is 1.3𝑊 (𝑚𝐾)  . 

First local corners of the elements are shown with ‘‘1’’s inside the elements. 

e.g. 

Node coordinates [m] 

Node 1 : (0, 0) 
Node 2 : (0.5, 0) 
Node 3 : (1, 0) 
Node 4 : (0, 0.5) 
Node 5 : (0.5, 0.5) 
Node 6 : (0, 1) 

3 

4 

1 

1 2 3 

4 5 

6 

𝑇 = 100 ℃ 

Insulated 

−𝑘
𝑑𝑇

𝑑𝑦
= −ℎ(𝑇 − 𝑇∞) 

ℎ = 5
𝑊

𝑚2𝐾
,    𝑇∞ = 20 ℃ 

1 1 

1 

2 1 

𝑥 

𝑦 
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Example 5.5 (cont’d) 

• Governing DE is 

−𝛻 ⋅ 𝑘𝛻𝑇 = 0 

• Elemental weak form (Slide 5-6) is 

 𝑘
𝜕𝑇

𝜕𝑥

𝜕𝑤

𝜕𝑥
+

𝜕𝑇

𝜕𝑦

𝜕𝑤

𝜕𝑦
𝑑Ω

 

Ω𝑒
=   𝑤𝑓 𝑑Ω

 

Ω𝑒
+   𝑤𝑞𝑛 𝑑Γ

 

Γ𝑒
 

 

𝐾𝑖𝑗
𝑒 =  𝑘

𝜕𝑆𝑖
𝑒

𝜕𝑥

𝜕𝑆𝑗
𝑒

𝜕𝑥
+

𝜕𝑆𝑖
𝑒

𝜕𝑦

𝜕𝑆𝑗
𝑒

𝜕𝑦
 𝑑Ω

 

Ω𝑒
 

 

𝐹𝑖
𝑒 =  𝑓𝑆𝑖  𝑑Ω

 

Ω𝑒
 

 

• We can start by calculating the Jacobian matrix of each element. 

 

𝑞𝑛 = 𝑘
𝜕𝑇

𝜕𝑥
𝑛𝑥 + 𝑘

𝜕𝑇

𝜕𝑦
𝑛𝑦 
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Example 5.5 (cont’d) 

• e=1 :      𝐽1 =
−1 1 0
−1 0 1

0 0
0.5 0
0 0.5

=
0.5 0
0 0.5

 

𝐽1 = 0.25 

𝐽1 −1 =
2 0
0 2

 

• e=2 :      𝐽2 =
−1 1 0
−1 0 1

0.5 0.5
0 0
0.5 0

=
−0.5 0
0 −0.5

 

𝐽2 = 0.25 

𝐽2 −1 =
−2 0
0 −2

 

 

• Elements 3 and 4 have the same shape and size as element 1 and their first local node 
is at the right angle corner. Therefore their Jacobian matrices are the same. 

𝐽3 = 𝐽4 = 𝐽1  

3 

4 

1 
1 1 

1 

2 1 

𝑥 

𝑦 
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Example 5.5 (cont’d) 

• Elemental systems can now be calculated. 

𝐾𝑖𝑗
𝑒 =  𝑘

𝜕𝑆𝑖
𝑒

𝜕𝑥

𝜕𝑆𝑗
𝑒

𝜕𝑥
+

𝜕𝑆𝑖
𝑒

𝜕𝑦

𝜕𝑆𝑗
𝑒

𝜕𝑦
 𝑑Ω

 

Ω𝑒
 

 

𝐾𝑖𝑗
𝑒 =  𝑘  

𝜕𝑆𝑖

𝜕𝜉
𝐽𝑒 11

−1 +
𝜕𝑆𝑖

𝜕𝜂
𝐽𝑒 12

−1
𝜕𝑆𝑗

𝜕𝜉
𝐽𝑒 11

−1 +
𝜕𝑆𝑗

𝜕𝜂
𝐽𝑒 12

−1
 

Ω𝑒

+
𝜕𝑆𝑖

𝜕𝜉
𝐽𝑒 21

−1 +
𝜕𝑆𝑖

𝜕𝜂
𝐽𝑒 22

−1
𝜕𝑆𝑗

𝜕𝜉
𝐽𝑒 21

−1 +
𝜕𝑗

𝜕𝜂
𝐽𝑒 22

−1   𝐽𝑒 𝑑Ω 

 

𝐹𝑖
𝑒 = 0  

 

e=1 : 

𝐾1 =
1.3 −0.65 −0.65

−0.65 0.65 0
−0.65 0 0.65
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Example 5.5 (cont’d) 

e=2 : 

𝐾2 =
1.3 −0.65 −0.65

−0.65 0.65 0
−0.65 0 0.65

 

 

e=3 and 4 :                              𝐾3 = 𝐾4 = [𝐾1] 

 

 

• Now the {𝑄} vector should be calculated. 

• Only contribution will come from the two 
MBC faces at the bottom. 

  

3 

4 

1 

1 2 3 

4 5 

6 

𝑇 = 100 ℃ 

NBC 
𝑞𝑛 = 0 

𝑞𝑛 = −𝑘
𝑑𝑇

𝑑𝑦
= −ℎ(𝑇 − 𝑇∞) 

𝛼 = −5,    𝛽 = 100 

1 1 

1 

2 1 

𝑥 

𝑦 



METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 5-51 

Example 5.5 (cont’d) 

3 1 

1 2 3 
1 1 

𝛽𝐿𝑓1
1

2
+

𝛼𝐿𝑓1
1

3
𝑇1 +

𝛼𝐿𝑓1
1

6
𝑇2 

𝛽𝐿𝑓1
1

2
+

𝛼𝐿𝑓1
1

6
𝑇1 +

𝛼𝐿𝑓1
1

3
𝑇2 

Contributions of the MBC at 
face 1 of e=1 to 𝑄1 and 𝑄2. 

3 1 

1 2 3 
1 1 

𝛽𝐿𝑓1
3

2
+

𝛼𝐿𝑓1
3

3
𝑇2 +

𝛼𝐿𝑓1
3

6
𝑇3 

Contribution of the MBC at 
face 1 of e=3 to 𝑄2 and 𝑄3. 
The contribution to 𝑄3 is not 
required because node 3 is an 
EBC node. 

No need 
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Example 5.5 (cont’d) 

𝑄 =   

100

2
0.5 +

−5(0.5) 

3
𝑇1 +

−5(0.5) 

6
𝑇2

100

2
0.5 +

−5(0.5) 

6
𝑇1 +

−5(0.5) 

3
𝑇2 +

100

2
0.5 +

−5(0.5) 

3
𝑇2 +

−5(0.5) 

6
𝑇3

𝑄3

0
𝑄5

𝑄6

   

 

𝑄 =   

25 − 0.8333𝑇1 − 0.4167𝑇2

50 − 0.4167𝑇1 − 1.6667𝑇2 − 0.4167𝑇3

𝑄3

0
𝑄5

𝑄6

    

Pay attention 



METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 5-53 

Example 5.5 (cont’d) 

• Global system is 

1.3 −0.65 0 −0.65 0 0
 2.6 −0.65 0 −1.3 0
  0.65 0 0 0
   2.6 −1.3 −0.65
 sym.   2.6 0
     0.65

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6

=

25 − 0.8333𝑇1 − 0.4167𝑇2

50 − 0.4167𝑇1 − 1.6667𝑇2 − 0.4167𝑇3

𝑄3

0
𝑄5

𝑄6

 

 

• Take the unknonws due to MBC from the {𝑄} vector into the [𝐾] matrix. 

2.1333 −0.2333 0 −0.65 0 0
−0.2333 4.2667 −0.2333 0 −1.3 0

0 −0.65 0.65 0 0 0
−0.65 0 0 2.6 −1.3 −0.65

0 −1.3 0 −1.3 2.6 0
0 0 0 −0.65 0 0.65

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6

=

25
50
𝑄3

0
𝑄5

𝑄6

 

 



METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 5-54 

Example 5.5 (cont’d) 

• Apply reduction for the known 𝑇3, 𝑇5 and 𝑇6. 

2.1333 −0.2333 −0.65
−0.2333 4.2667 0
−0.65 0 2.6

𝑇1

𝑇2

𝑇4

=

25
50 + 0.2333 100 + 1.3(100)

0 + 1.3 100 + +0.65(100)
 

• As seen MBC’s do not destroy the symmetry of the reduced system. 

• Solve for the unknown primary variables 

 

𝑇1

𝑇2

𝑇4

=
43.3
50.0
85.8

 ℃ 

• Constant 𝑇 lines should be parallel to the EBC 
boundary and they should be perpendicular 
to the insulated boundary. 


