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What Are We Going to Learn?

 Compared to 1D, major differences in 2D FEM formulation are

e application of IBP.
* master elements and shape functions for triangular and quadrilateral elements.
e Jacobian transformation.

* boundary integral evaluation.

Triangular Quadrilateral
element element
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Model DE in 2D

Poisson equation in 2D is
—V-(aVu)=f

where a(x,y) and f(x,y) are known functions and
u(x,y) is the unknown.

For a problem in the xy plane of the Cartesian coordinate system, gradient operator is

L0 N 9,
‘ox ]ay
In the xy plane Poisson equation becomes

6+ 0 ou N du.\
ax ]ay aaxl aay =/

N J N J
Y

74 alVu

d ou d au
d0x aax dy c')y
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Model DE in 2D

* |f function a is constant over the problem domain, Poisson eqn. becomes

7. (V1) % Ou | O
—_ . = - —_ = -_ —_— =
¢ w=1 “=9 dx?  0x? g
« Homogeneous form of this equation is called the Laplace’s equation
V2 0 0%u + 0%u 0
— — - —_ =
¢ dx?  0x?

* Poisson equation models many physical phenomena such as

e potential flow

* heat conduction

e groundwater flow

* transverse deflection of plates

* electrostatics and magnetostatics
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Obtaining Weak Form in 2D

N [ ou\ o[ ou\
caeTEE: x\%9x) "oy \%5y ) =7

Weighted residual integral statement of this DE is
f 9, du 9, u Jq = 0
Q Y1 ax\“ox dy ¢ dy f B

2"d order derivatives of u can be reduced to 1%t order using the following general
equations

J oF 10 - fFaWdQ+j£ F . dr
Qwax )y ox FW e

oF ow
fw—dQ=—fF—dQ+jéande
a Oy o 0y r
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Obtaining Weak Form in 2D

fgl N (ax> ai( g;) Wf]dﬂ_o
/ .

du ow 10 f T ou ow 10 % ou T
a dx Ox - aPY nx a dy 0y wa dy Ty

* Elemental weak form is

J auaw_l_ﬁuaw i = J 10 +f Ju au T
qe \9x dx ' 9y dy = ). L\ T T Ay

N J
Y

g, : SV of the problem

where 1, and n,, are the Cartesian components of the unit outward normal of I'°.
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2D Formulation (cont’d)

e Approximate solution over an element is

NEN

ué = Z u;i 57 (x,y)

j=1

* For linear triangular and quadratic elements NEN is 3 and 4, respectively.

3-node triangular 4-node quadrilateral
element element
NEN =3 NEN =4
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2D Formulation (cont’d)

« To get the it equation of element e
* substitute approximate u¢ into the elemental weak form and

* selectw =57

NEN NEN

0 ooe \0S7 0 z oo | 0SF f jg
— S¢ dQl = SEf dQ S¢ q,drl
Jﬂe ¢ 0x z ] S] 0x * ay — ] J ay Qe ' f * re i An

* Arrange to get

NEN

2] 05 057 , 957 051 4 e—fse dﬂ+jl€Se dr
ge  \ 9x ox T ay 9y A Qe"f el

J N\ J S J
Y Y

Ki(j' Ff Qi

l
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2D Formulation (cont’d)

e« NEN X NEN elemental system is

[KH{u®} = {F°} +{0Q°}

0S7 0Sf  0SP aSf J f
e — J 7t = | S7fdQ SP qpdl
g f <6x ox * dy 6y>dQ Fe Qe re |

e To evaluate these integrals
e triangular and quadrilateral master elements will be introduced.
* shape functions will be written in master element coordinates.
e 2D Jacobian transformation will be used.

* GQintegration will be used.
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2D Quadrilateral Master Element

Actual quadrilateral element
1
- 4
y
=X 3
\_ /

-

\_

Master quadrilateral element

(_111).

AT

(L)

4

1

3
L

2

(-1,-1)"

°(1,-1)

~

Master quadrilateral element is a square of size 2x2.

Its nodes are always numbered in a CCW order starting with (-1,-1) corner.
Nodes of the actual element are also numbered in CCW order. It does NOT matter

which node is selected as the first one.
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Shape Functions of 2D Quadrilateral Master Element

General form of Lagrange type 2D shape functions over a 4-node quadrilateral
element is

S = A+ BE + Cn + Dén

Unknown constants A4, B, C and D can be found using the fact that shape functions
satisfy the Kronecker-Delta property

(1 ifi=j
1 A7
Si=71-HA-n) . .3
1
| S, =7A+HA -1 ¢
Shape functions are 1 >
S5 =71+ +1)
1 10 02
Se=71-H+m)
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2D Triangular Master Element

\_

Actual triangular element

J

Master triangular element is a right triangle with an area of 0.5.
Its nodes are always numbered in a CCW order, starting with (0,0) corner.

-

Master triangular element

(0,1)

A7

~
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Shape Functions of 2D Triangular Master Element

General form of Lagrange type 2D shape functions over a 3-node triangular element is
S=A+B+Cn

Unknown constants A, B and C can be found using the Kronecker-Delta property of
the shape functions

A7

$;=1-¢-1 >

Shape functions are S, =¢&

)
w
I
=
| A
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Jacobian Transformation in 2D

dS/dx and dS/dy derivatives appear in the integrals of Slide 5-9.

These derivatives need to be expressed in terms of 05 /9d¢ and 0S5 /dn derivatives.

This requires the transformation between (x, y) and (¢, n) coordinates.

Actual elementin (x,y)

m

y=y(,n)

-

/

Master element in (&,7)
AN

I

~
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Jacobian Transformation in 2D (cont’d)

Remember that in 1D x (&) relation was

x1 + x5
— f 2
This relation can also be expressed as
iy 1-¢ 1+¢
— e — e e
x—ij S; - x—Tx1+Tx2
j=1

This works due to the Kronecker-Delta property of the shape functions
§ = —1ismappedtox = x{

« & =1ismappedtox = x5

Same logic can also be used in 2D to get x(&,1) and x(&, n) relations.
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Jacobian Transformation in 2D (cont’d)

NEN
_ e C.
X = Z Xj S; and y
j=1

 These can be used for both quadrilateral and triangular elements.

Il
N
=,
N

[ ] x,e

i and yje are the coordinates of the corner points of the elements.

Example 5.1: Obtain x(&,7n) and y(&,n) relations for the following element.

by

’) Corner coordinates are

1 Corner 1: (5, 6)
Corner 2 :(0, 7)
Corner 3:(2,0)

> X
3
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Example 5.1 (cont’d)

=
Il
INgE
Y
Il

~
Il
[N

5(1-¢—n)+0()+2(m) =5—-58—3n

6(1-¢—n)+7@)+0(n) =6+¢&—6n

~
Il
=

<
I
gl
=,
N
I

* Every point on the master element can be mapped to
a point on the actual element using these relations.

* For example point P with (¢,17) = (0.5, 0.5) maps to

x =5-5(0.5) —3(0.5) =1
y=6+0.5—-6(0.5) =3.5 2

* Both points P and Q are the mid-points of the Q(1,3.5

faces opposite to node 1.

> X

3
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Jacobian Transformation in 2D (cont’d)

* With the link between (x, y) and (¢, 7n) coordinates, S /dx and dS/dy derivatives can

be linked to dS/d¢ and 95 /0dn.

as  dS ax dS dy
66 dx 0¢ ay ¢
as  dS ax aS dy
on " ox on ay an
dx

* In 1D Jacobianwas J¢ = —.

d§

e |n 2D Jacobian is a matrix.

(0S)
¢
oS

)

0x 0y (08
aé 0&| ) ox

an  onl \ay.

Jacobian matrix

U°]

* Ingeneral [J¢] is different for each element of the FE mesh.
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Jacobian Transformation in 2D (cont’d)

* For the integrals of slide 5-9 what we actually need is
S\ [0¢ on(0S)
<§>= g_x 0x {a_f

$ adn|)as
o) Loy ol (@,

N J

"

Inverse of the
Jacobian matrix

[]e]—l

Since we know x and y as a function of ¢ and 1, but not the other way, it is NOT
practical to calculate [J¢] ™! directly.

* Instead we first calculate[/¢] and then take its inverse.
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Example 5.2

Example 5.2: Obtain [J¢] and [J¢] ™ of the element that we studied in exercise 5.1.

by
2 Corner coordinates are
1 Corner1:(5, 6)
Corner 2 :(0, 7)
Corner 3:(2,0)
- X
3
9x  dy] Z zy 9S, 8S, 8S3]. , .
— = Xj J X
o = |06 98| _ 55 BT |
dx 0y S, 0S, 0S; xze 2
on Onl z X 677 zyf an  an  anl-? Y3

* This general [J¢] calculation formula applies to both triangular and quadrilateral
elements.
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Example 5.2 (cont’d)

For a triangular element shape functions are

S1=1-¢—1n ,
For a triangular element derivatives of the shape functions are
dS; 0SS, 0837
96 0§ 0¢
adS; dS, 083
L dn dn 07

Jacobian of the element is

=[5 Bl 7|- 153
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0
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0
1

|

1
—6
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Example 5.2 (cont’d)

* |nverse of the Jacobian matrix is
[]e]—l — i ]262 _]f2]
Jell=Jjz1  Ji

‘\ /¢l = Jidz2 — Ji2Jz1

= (=5)(=6) — (1)(~3) = 33

[]e]—lzi[—6 —1] =[—O.182 0.030
3313 —51 710091 -0.152

* Note that in 1D J¢ was equal to the ratio of actual element’s length to master
element’s length.

« Similarly for a 3-node triangular element |J¢| is equal to the ratio of actual element’s
area to master element’s area. In this exercise the area ratiois 16.5/(0.5) = 33.

METU — Dept. of Mechanical Engineering — ME 413 Int. to Finite Element Analysis — Lecture Notes of Dr. Sert 5-22



Example 5.3

Example 5.3: Obtain [/¢] and |]¢| of the element shown below.

Je]

by
.30 > X
[0S, 0SS, 0S3 0S.T
as  ds 0§ 0¢
aS; dS, 0S3 08,
dn on OJdn 0On

V1]

Y2
Y3

Vs

Corner coordinates are

Corner1: (5, 6)
Corner 2 :(0, 7)
Corner 3:(0, 0)
Corner4:(2,0)

m—1 1-n n+1 —-1-—n
_| 4 4 4 4
E—1 —=¢—-1 ¢&¢+1 1-¢
4 4 4 4

S =N=Nd
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Example 5.3 (cont’d)

[]e]_l 3n—7 -n+1
T 4(38-3 —-&-13

Determinant of [J¢] is
1
el = JiJz2 — Ji2Jz1 = 5(25 —21n +47)

Note that this time both the Jacobian matrix and its determinant are functions of ¢
and 7.

Integral of [J¢| over the master element will give the area of the actual element.

j j —(ZE 21n+47) dé dn = 23.5
n=-1J¢§=-1 <

e \ Actual element’s

This can be generalized as follows which will be used in GQ integration

f dxdy = | |J¢|d&dn (True for both triangular and
Q Qe quadrilateral elements)
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Calculation of Integrals Over a Master Element

* Now the integrals of Slide 5-9 can be evaluated on a master element using GQ.

Kle]:J a<
Qe

4 )
Use x = X x{'S; and

y = 2 Y/ Sj to convert
x and y of function a

to ¢ and 7.

| Same for f of F.

0Sf 3¢

aSf 3¢

dx 0x

r

0S¢  0S0¢ . S on
dx 0&0x Onox

0¢

aS - aS -
= — ()11 +%U)12

J/

_|_

dy dy

)dﬂ ) Fie:

f Sef do
Qe

J dxdy = J
Qe Q¢

master

J¢ldgdn

\

(9S° 8S0¢ aSan

9y 0y onoy

_0s

aS
=3¢ Uzt +5, 0z

J/
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Gauss Quadrature Over Quadrilateral Elements

For a quadrilateral master element both ¢ and 1 change between -1 and 1.
[-1, 1] are the limits used in 1D GQ integration.
Therefore for 2D quadrilateral elements 1D GQ tables can be used.

Consider the evaluation of the following integral using NGP points in both ¢ and 1

directions.
1 1
I = f J g dédn
=—1J&=-1
In 2D there are NGP?
/GQ points
NGP NGP NGP?
Z Z 9y M) Wi Wy, or I = z 9 M) Wy,
n=1 m= k=1 \
Sum forn j /
Combined sum Wy = Win Wy,
Sum for &

foré and n
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Gauss Quadrature Over Quadrilateral Elements (cont’d)

2D GQ Integration Over Quads

1D GQ Integration

NGP Ek Wk NGP fk Nk Wk
1 0.0 2 —| 1 0.0 0.0 4
, —1//3 1 -1/V/3 | =1/V3 1
1/v3 1 T~ | , | V3 | -3 1
3 0.0 8/9 1/V3 1/V3 !
V0.6 5/9 —/0.6 | —V/0.6 25/81
0.0 V0.6 40/81
A7 V0.6 —/0.6 25/81
. . —/0.6 0.0 40/81
| 2® g® o® 9 0.0 0.0 64/81
9 point GQ V0.6 0.0 40/81
over a quad. 48 51 —*=¢ —0.6 V0.6 25/81
element 0.0 V0.6 40/81
® ® ®
| | V06 | V06 | 25/81
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Gauss Quadrature Over Triangular Elements

* For atriangular master element limits for £ and n are [0, 1] and [0, 1-¢], respectively.

fﬂef dgdy = L :0 ]n :_:f dnde

* Therefore a new GQ table is necessary.

2D GQ Integration Over Triangles

NGP $k Nk Wy

1 1/3 1/3 0.5
0.5 0.0 1/6 .

3 0.0 0.5 1/6 4 point GQ over
0.5 0.5 1/6 a triangular
1/3 1/3 -27/96 element

4 0.6 0.2 25/96 f»
0.2 0.6 25/96
0.2 0.2 25/96
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Example 5.4

Example 5.4: Calculate the first entry of the following elemental force vector

Ff =j x2S; dxdy
Qe

over the following element using 4 point GQ integration.

Ay Corner coordinates are
Corner 1:(0, 0)
12 3 Corner 2 : (5, 0)
1 X Corner3:(3, 2)
2
¢ > Corner4: (0, 2)
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Example 5.4 (cont’d)

* We need to calculate
F¢ = j x2S, dxdy
Qe
e Switching to master element coordinates the integral becomes

1 1 1
Ff = f f xEm? =(1-&)(L—n) |J°|dedn
e 1% Y ldédn

~ dxdy

S1

* We first need x as a function of ¢ and 7.
4

x = Z x€ 5; = (0)S; + (5)S, + (3)S; + (0)S,
=1

1 1
x=0)7A+HA-M+B)7A+HA+n)

1
x=§(4+4€—n—€n)
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Example 5.4 (cont’d)

 Next we need to calculate the Jacobian and its determinant (similar to Slide 5-23)

m—1 1—-n n+1 —-1-n1[0 01 [4—n o_
e] = 4 4 4 4 5 0f_ 2

E—1 —§&—1 &+1 1-¢|[3 2 —1-¢ .

4 4 4 4 0 2] 7 |

- () - (T o =4

* The integral becomes

re=[ [ ferac-n-em]| ja-o0-n3t e
g&m

1 1
Ff=] j g dédn
—-1J-1
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Example 5.4 (cont’d)

* 4 point GQ over the quadrilateral master element will be
Ff = g(&,n)Wy + g(€2,m2)We + g(&3,m3)Ws + g(€4,na) Wa

where points and weights are provided in Slide 5-27

e The result will be

Ff =1.33204+4.971 + 0.1492 4 0.5569 = 6.9993

Notes:
* Ingeneral [J¢] is a function of £ and n and it needs to be evaluated at GQ points.
* In this example we did not need y (&, 1) bacause f was not a function of y.

* In this example we did not calculate the inverse of [J¢] because force vector does not
contain shape function derivatives. Stiffness matrix calculation will need it.

* |Isthe above result exact? What is the exact value? What will 1 point and 9 point
integrations give?
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Calculation of {0}

* {Q}integrals need to be evaluated only for the real boundary faces where NBC or MBC
is specified.

* Consider the following problem with a mesh of 3 elements and 6 nodes.

NBC < 4

1 2 3
- ~ /
NBC
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e There are 4 elements faces at NBC or MBC boundaries.

Calculation of {0} (cont’d)

@ EBC
1
« The assembled global {Q} will be (first local node NBC§ 4F 2
of each element is shown, the others are located Q@ Q)
in a CCW order) . A 1
1 NBC
(Q1) ( )
Ql + QZ
Q> (<2 1) (3, Qs and Q4 are not necessary
0 = Q3 -y Q% because PVs are known at these
Q4 Q1+ 03 nodes.
\gsj Qi +0%+03 Only the circled ones are necessary.
6

\

Q3

)

Note : In this example we do not have an internal node (a node that is not located at a

boundary), but for those nodes sum of Q7 ’s will be zero.
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Calculation of {0} (cont’d)

For the Poisson equation {Q¢} is calculated as (Slide 5-9)

Qie =f S; qn ds
l"e

\ Ju ou
s —+ Cl@ny

dn = aaxnx

['¢ is the boundary of the element and it is composed of NEN straight lines.

For a triangular element the integral can be decomposed into 3 parts.

Q;f fSl-qn ds+J Siqn ds+j S;q, ds
1 12 fi\_/fS:FaceB

g fa/cel‘/ b . + o
[oJ] = S /5 Q
Q 2 Q
/gc‘@ P @ CG? 3 § ‘L%)
3 3
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Calculation of {0} (cont’d) .

Consider the 3 element problem of Slide 5-34. @ EBC
1 5
We need Q1, 03, 0%, 07, 03 B ¢ 5
'S
1
e=1: N 3
NBC
Q%=f$1qnds+f nds+j nds+f51qnds
f1 f2 f3 f4
S1 is zero on faces 2 and 3
Q%=J52qnds+jS L ds + L ds + g, ds
f1 f f3 4
No need (2 is internal) S, is zero on faces 3 and 4
Qin ads + nds + nds+j54qnds
f1 f2 f3 fa
S, is zero on faces 1 and 2 No need (f3 is internal)
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Calculation of {0} (cont’d)

[ ] -_— . ) 6
EBC
Ql - Slqn ds +j 1@ :
f 1 f2 NBC < 4
S, is zero on face 2 No need (f3 is @ @
internal) . W 1
2. 1 2 3
NBC
Q; = Sqnds+f dS+JSlqnds
f2 f3
No need (f1 is S is zero on face 2
internal)

* Conclusion : Boundary integrals need to be calculated only for real boundary faces
where NBC or MBC is provided.
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Calculation of {0} (cont’d)

. : 6
Consider the common and simple case of g,, = constant. (
Let’s study the calculation of ©) EBC

NBC {2 1 5
Q% — f 51qn ds +j 51qn ds ™= @
f1 f4 @

S1 is a 2D shape function but it reduces to a first order 1 3 3
function over faces 1 and 4 of element 1. NBC, q,, = g

l @

1 f1 2
4 s f4 1
< S < Ll >
Lty 1
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Calculation of {0} (cont’d)

Q% =] S14n d5+f S1qn ds
£1 f4

ot =

1

=0

1 — —
(-5

S

L1

f4
qB dS + j —a
) s=0 Ll

Q1—

Lf1 + = > Lf4

qL

Same procedure can be followed to calculate Q3.

Q% = Jr S,qn ds
f1
1 _ r S d
QZ — J L1 dp as
Q; = Lfl
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Calculation of {0} (cont’d)

Calculation of Q1, Q% and Q3 follow the same procedure.

4B
Qi=?L}4 : Q12=7L]2°1 :

Summary :

From the bottom face of e=1, amount of provided SV
is ggLr, and it is divided equally to Q1 and Q3.

From the bottom face of e=2, amount of provided SV
is ggL7;, and it is divided equally to QF and Q5.

From the left face of e=1, amount of provided SV
is qLL}4 and it is divided equally to Q1 and Q}.

From the left face of e=3, amount of provided SV
is g, L} and it is divided equally to Q5 and Q3.

3 _ qL 3
1 =5 br3
6
CILL?B <
EBC
A NO
4 5
qLL]1°4 < @ @
2 1 1
1 3

CIBL]lq CIBL]2°1
2 2
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Calculation of {0} (cont’d)

* Assembled {Q} vector is

(4B qy, 6
Q1) PR Ha f
1
q q EBC
QZ _BLfl + B Lfl NBC 1® 5
Q ‘ : n=a "
Q=1 34=" Q3 > n AL
0y qL qL 1@ 1@
Qs 2 Lf4 2 Lf3 ) 1 2 3
\Us/ Q- - ~ .
\ Q6 ) NBC, g, = q

* Note that it is not possible to evaluate Q3, Qs and Qg4 exactly, and these are not
necessary due to given EBC for us, us and u.
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Calculation of {0} (cont’d)

Question : What if g,, is not constant at an NBC boundary?

Answer : Just evaluate the line integrals with the given variable g,,.

Question : What if the BC is not NBC but MBC? Consider the following case where
bottom BC is MBC with constant a and S.

6
@ EBC
NBC ) 41 5
dn = 4y, @
'l
1 2 3
MBC, g, = au+f
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Calculation of {0} (cont’d)

Qll =j S14n d5+f S1qn ds . 6
f1 fa
N RN © EBC
Sameas:ﬂLl NEC { 41 5
before 2 T4 In = 41 @ @
- 1
1 2
S 1 MBC, qn; au + f
1—LT (auf1 +ﬁ) ds
f1 f1 \
1 S S
L u}1=(1—LT>u%+LTU%
Ui § f1 f1
51 i ul _ ul
s 5 ul, =ul + =25
1 f 2 L
Lt
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Calculation of {0} (cont’d)

) Lfs S . Uz —
leJ 1—T a u1+— +ﬁd +_Lf4
s=0 Lfl Lfl

6
all all (
1 _ B 1 “hf1 41 f1 qL
Q1 = ELfl-I' 3 u; + 6 uz | + 7Lf4 © EBC
NBC 1 5
™~ ~ - S~ _ 1 4
N dn = qL
Contribution of the MBC Contribution of the @ @
of the bottom face NBC of the left face L Q 1
1 2 3
MBC, g, = au+f

* To calculate Q5 a similar integral is evaluated but this time with S,.

Lfr [ s Uy — uj
Q%zf — ||a|u; + ——s |+ B|ds
s=0 Lfl Lfl

B aLf1 aLf1
Q2 ZEL]lﬁ 6 uj + 3 Uz
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Calculation of {0} (cont’d)

6
e Calculation of Q7 is just the same as Q1. (
EBC
0?2 = ELZ al‘fl 2_|_al‘f1 NBC 1@ 5
i =Slpt——u c us o =a,] 5
a2
1 2 3

* Assembled {Q} is

Q1)
Q2
F

Us

\Q¢/

-

)

qr CIL
2 o Lpat 2 > L7s

(s

Us y,

hd

MBC, g, = au+f

Circled terms
need to be
transferred to
the [K]
matrix. So it is
better to
write them
using global
indices.
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Example 5.5

Example 5.5: Determine the temperture distribution over the following 2D
geometry. Obtain unknown nodal temperatures. Thermal conductivity of the
medium is 1.3 W /(mK) .

First local corners of the elements are shown with ““1”’s inside the elements.

Node coordinates [m]

Node 1 : (0, 0)
Node 2 : (0.5, 0)
Node 3 :(1, 0)
Node 4 : (0, 0.5)
Node 5 : (0.5, 0.5)
Node 6 : (0, 1)

Insulated <
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Example 5.5 (cont’d)

* Governing DE is
—V-(kVT) =0

 Elemental weak form (Slide 5-6) is

f r(2LOw 0T Ow) 1o f do + f dr
ge \0x 0x 0y dy B Qve Win

Fe\

e e e e — ka_T + ka_T
K = j k(asi i ) an) dQ T ek oy
J o Jge \Ox dx = dy dy
Fie — fSl d.Q.
Qe

* We can start by calculating the Jacobian matrix of each element.
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Example 5.5 (cont’d)

0 0

e=1: =[] o Y] 05 0 =% O]
/'l = 0.25 |
it = g 0]
_ 0.5 05 _ - X
R | KR B el
|J?| = 0.25
A7 = _02 —02]

Elements 3 and 4 have the same shape and size as element 1 and their first local node
is at the right angle corner. Therefore their Jacobian matrices are the same.

J%] =% = [/
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Example 5.5 (cont’d)

Elemental systems can now be calculated.

0S¢ 0S¢  9S¢ AS¢
K5=Jk<‘ L+ "»dﬂ
Qe

dx dx  Jdy OJy

e Si e—1 e Sj e—1>
k5= k K g0t + n(/>12><5(/>11 U9

Si -1 e . e—1 e
< 3% - (J®)a1 + an (/e)22>< 9% Je)a1 + (/ )22 )] 17¢1dQ

F7 = {0}

K'=|-0.65 0.65 0

—0.65 0 0.65

1.3  —0.65 —0.65‘
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Example 5.5 (cont’d)

e=2:
1.3 —0.65 —0.65
K?=|-0.65 0.65 0
—0.65 0 0.65
e=3and 4: [K3] = [K*] = [K1]

* Now the {Q} vector should be calculated.

* Only contribution will come from the two Gn =
MBC faces at the bottom.

= de_ h(T —T,

a=-5 f =100
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Contributions of the MBC at
face 1 of e=1to Q; and Q.

Contribution of the MBC at
face 1 of e=3 to @, and Q5.
The contribution to Q5 is not

required because node 3 is an
EBC node.
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-

<

\

fLt, all
2f1 M/

3

1
al’
17+

L3
2

3

NE

1 2 3
all fLt,  all
f1 f1 f1
T T
+ 6 2\/ > + 6 1 +

ON®

2 3
al?
6f1 T3\ /No need

aLg,

3

I
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100

! 2

5+

Example 5.5 (cont’d)

100 ~5(0.5) . =5(05)
2 3 ! 6 °
~5(0.5) _  —5(0.5) 100 —5(0.5)
T T, + —0.5 T
6 177 3 2T T3 2+
Q3
0
Qs Pay attention
Us
r 25 — 0.8333T; — 0.4167T, \
50— 0.4167T; — 1.6667T, — 0.4167T5
Q =< QO3 >
Qs
. Q¢ J

—5(0.5)

6

I3
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Global system is

1.3

Take the unknonws due to MBC from the {Q} vector into the [K]| matrix.

—0.65
2.6

sym.

0
—0.65
0.65

" 2.1333
—0.2333
0
—0.65
0

0

Example 5.5 (cont’d)

—0.65 0 0
0 —-1.3 0
0 0 0
26 —13 -0.65
2.6 0
0.65

—0.2333
4.2667
—0.65
0
—1.3
0

0
—0.2333
0.65
0
0
0

d KT6J

—0.65
0

f

25 — 0.8333T, — 0.4167T,

0

Qs
\ Qs

0 0 1/(T (25
—1.3 0 T, 50

0 0 ) T3 | _ Qs
—1.3 —0.65||T 0

2.6 0 Ts Qs

0 0.65 1 \TgJ \Q¢/

50 — 0.4167T; — 1.6667T, — 0.4167T5
) 0;

\
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Example 5.5 (cont’d)

Apply reduction for the known T3, Tz and T.

—0.2333 4.2667 0

[2.1333 —0.2333 —-0.65
—0.65 0 2.6

T, 25
{TZ} — {50 + 0.2333(100) + 1.3(100)
T, 0 + 1.3(100) + +0.65(100)

As seen MBC’s do not destroy the symmetry of the reduced system.

Solve for the unknown primary variables

Contour plot of the finite element solution

I 43.3 I 100

{Tz} = {50.0} °C 0sl 90

Ty 85.8 el %0

- 70

Constant T lines should be parallel to the EBC A o

boundary and they should be perpendicular 0.2} N
to the insulated boundary. 0
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