Middle East Technical University
 Department of Mechanical Engineering
 ME 413 Introduction to Finite Element Analysis

Chapter 5

Two-Dimensional Formulation

These notes are prepared by
Dr. Cüneyt Sert
http://www.me.metu.edu.tr/people/cuneyt
csert@metu.edu.tr

What Are We Going to Learn?

- Compared to 1D, major differences in 2D FEM formulation are
- application of IBP.
- master elements and shape functions for triangular and quadrilateral elements.
- Jacobian transformation.
- boundary integral evaluation.

Triangular element

Quadrilateral element

Model DE in 2D

- Poisson equation in 2D is

$$
-\nabla \cdot(a \nabla u)=f
$$

where $a(x, y)$ and $f(x, y)$ are known functions and

$$
u(x, y) \text { is the unknown. }
$$

- For a problem in the $x y$ plane of the Cartesian coordinate system, gradient operator is

$$
\nabla=\vec{\imath} \frac{\partial}{\partial x}+\vec{\jmath} \frac{\partial}{\partial y}
$$

- In the $x y$ plane Poisson equation becomes

$$
\begin{gathered}
-\underbrace{\left(\vec{\imath} \frac{\partial}{\partial x}+\vec{\jmath} \frac{\partial}{\partial y}\right)}_{\nabla} \cdot(\underbrace{\left(a \frac{\partial u}{\partial x} \vec{\imath}+a \frac{\partial u}{\partial y} \vec{\jmath}\right)}_{a \nabla u}=f \\
-\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(a \frac{\partial u}{\partial y}\right)=f
\end{gathered}
$$

Model DE in 2D

- If function a is constant over the problem domain, Poisson eqn. becomes

$$
-a \nabla \cdot(\nabla u)=f \quad \rightarrow \quad-\nabla^{2} u=g \quad \rightarrow \quad-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}\right)=g
$$

- Homogeneous form of this equation is called the Laplace's equation

$$
-\nabla^{2} u=0 \quad \rightarrow \quad-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x^{2}}\right)=0
$$

- Poisson equation models many physical phenomena such as
- potential flow
- heat conduction
- groundwater flow
- transverse deflection of plates
- electrostatics and magnetostatics

Obtaining Weak Form in 2D

$$
\text { Model DE }: \quad-\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(a \frac{\partial u}{\partial y}\right)=f
$$

- Weighted residual integral statement of this DE is

$$
\int_{\Omega} w\left[-\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(a \frac{\partial u}{\partial y}\right)-f\right] d \Omega=0
$$

- $2^{\text {nd }}$ order derivatives of u can be reduced to $1^{\text {st }}$ order using the following general equations

$$
\begin{aligned}
& \int_{\Omega} w \frac{\partial F}{\partial x} d \Omega=-\int_{\Omega} F \frac{\partial w}{\partial x} d \Omega+\oint_{\Gamma} w F n_{x} d \Gamma \\
& \int_{\Omega} w \frac{\partial F}{\partial y} d \Omega=-\int_{\Omega} F \frac{\partial w}{\partial y} d \Omega+\oint_{\Gamma} w F n_{y} d \Gamma
\end{aligned}
$$

Obtaining Weak Form in 2D

$$
\int_{\Omega}\left[-w \frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)-w \frac{\partial}{\partial y}\left(a \frac{\partial u}{\partial y}\right)-w f\right] d \Omega=0
$$

$$
\int_{\Omega} a \frac{\partial u}{\partial x} \frac{\partial w}{\partial x} d \Omega-\oint_{\Gamma} w a \frac{\partial u}{\partial x} n_{x} d \Gamma \quad \int_{\Omega} a \frac{\partial u}{\partial y} \frac{\partial w}{\partial y} d \Omega-\oint_{\Gamma} w a \frac{\partial u}{\partial y} n_{y} d \Gamma
$$

- Elemental weak form is

$$
\int_{\Omega^{e}} a\left(\frac{\partial u}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial w}{\partial y}\right) d \Omega=\int_{\Omega^{e}} w f d \Omega+\oint_{\Gamma^{e}} w\left(a \frac{\partial u}{\partial x} n_{x}+a \frac{\partial u}{\partial y} n_{y}\right) d \Gamma
$$

$q_{n}:$ SV of the problem
where n_{x} and n_{y} are the Cartesian components of the unit outward normal of Γ^{e}.

2D Formulation (cont'd)

- Approximate solution over an element is

$$
u^{e}=\sum_{j=1}^{N E N} u_{j}^{e} S_{j}^{e}(x, y)
$$

- For linear triangular and quadratic elements $N E N$ is 3 and 4, respectively.

3 -node triangular element $N E N=3$

4-node quadrilateral element $N E N=4$

2D Formulation (cont'd)

- To get the $i^{\text {th }}$ equation of element e
- substitute approximate u^{e} into the elemental weak form and
- select $w=S_{i}^{e}$

$$
\int_{\Omega^{e}} a\left[\frac{\partial}{\partial x}\left(\sum_{j=1}^{N E N} u_{j}^{e} S_{j}^{e}\right) \frac{\partial S_{i}^{e}}{\partial x}+\frac{\partial}{\partial y}\left(\sum_{j=1}^{N E N} u_{j}^{e} S_{j}^{e}\right) \frac{\partial S_{i}^{e}}{\partial y}\right] d \Omega=\int_{\Omega^{e}} S_{i}^{e} f d \Omega+\oint_{\Gamma^{e}} S_{i}^{e} q_{n} d \Gamma
$$

- Arrange to get

$$
\sum_{j=1}^{N E N}[\underbrace{\left.\int_{\Omega^{e}} a\left(\frac{\partial S_{j}^{e}}{\partial x} \frac{\partial S_{i}^{e}}{\partial x}+\frac{\partial S_{j}^{e}}{\partial y} \frac{\partial S_{i}^{e}}{\partial y}\right) d \Omega\right] u_{j}^{e}=\underbrace{\int_{\Omega^{e}} S_{i}^{e} f d \Omega}_{F_{i}^{e}}+\underbrace{\oint_{\Gamma^{e}} S_{i}^{e} q_{n} d \Gamma}_{Q_{i}^{e}}}_{K_{i j}^{e}}
$$

2D Formulation (cont'd)

- $N E N \times N E N$ elemental system is

- To evaluate these integrals
- triangular and quadrilateral master elements will be introduced.
- shape functions will be written in master element coordinates.
- 2D Jacobian transformation will be used.
- GQ integration will be used.

2D Quadrilateral Master Element

Actual quadrilateral element
Master quadrilateral element

- Master quadrilateral element is a square of size 2×2.
- Its nodes are always numbered in a CCW order starting with ($-1,-1$) corner.
- Nodes of the actual element are also numbered in CCW order. It does NOT matter which node is selected as the first one.

Shape Functions of 2D Quadrilateral Master Element

- General form of Lagrange type 2D shape functions over a 4-node quadrilateral element is

$$
S=A+B \xi+C \eta+D \xi \eta
$$

- Unknown constants A, B, C and D can be found using the fact that shape functions satisfy the Kronecker-Delta property

$$
S_{j}\left(\xi_{i}, \eta_{i}\right)= \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

- Shape functions are

$$
\begin{aligned}
& S_{1}=\frac{1}{4}(1-\xi)(1-\eta) \\
& S_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
& S_{3}=\frac{1}{4}(1+\xi)(1+\eta) \\
& S_{4}=\frac{1}{4}(1-\xi)(1+\eta)
\end{aligned}
$$

2D Triangular Master Element

Actual triangular element
Master triangular element

- Master triangular element is a right triangle with an area of 0.5.
- Its nodes are always numbered in a CCW order, starting with $(0,0)$ corner.

Shape Functions of 2D Triangular Master Element

- General form of Lagrange type 2D shape functions over a 3-node triangular element is

$$
S=A+B \xi+C \eta
$$

- Unknown constants A, B and C can be found using the Kronecker-Delta property of the shape functions
- Shape functions are

$$
\begin{aligned}
& S_{1}=1-\xi-\eta \\
& S_{2}=\xi \\
& S_{3}=\eta
\end{aligned}
$$

Jacobian Transformation in 2D

- $\partial S / \partial x$ and $\partial S / \partial y$ derivatives appear in the integrals of Slide 5-9.
- These derivatives need to be expressed in terms of $\partial S / \partial \xi$ and $\partial S / \partial \eta$ derivatives.
- This requires the transformation between (x, y) and (ξ, η) coordinates.

Jacobian Transformation in 2D (cont'd)

- Remember that in 1D $x(\xi)$ relation was

$$
x=\frac{h^{e}}{2} \xi+\frac{x_{1}^{e}+x_{2}^{e}}{2}
$$

- This relation can also be expressed as

$$
x=\sum_{j=1}^{N E N} x_{j}^{e} S_{j} \quad \rightarrow \quad x=\frac{1-\xi}{2} x_{1}^{e}+\frac{1+\xi}{2} x_{2}^{e}
$$

- This works due to the Kronecker-Delta property of the shape functions
- $\xi=-1$ is mapped to $x=x_{1}^{e}$
- $\xi=1$ is mapped to $x=x_{2}^{e}$
- Same logic can also be used in 2D to get $x(\xi, \eta)$ and $x(\xi, \eta)$ relations.

Jacobian Transformation in 2D (cont'd)

$$
x=\sum_{j=1}^{N E N} x_{j}^{e} S_{j} \quad \text { and } \quad y=\sum_{j=1}^{N E N} y_{j}^{e} S_{j}
$$

- These can be used for both quadrilateral and triangular elements.
- x_{j}^{e} and y_{j}^{e} are the coordinates of the corner points of the elements.
e.g. Example 5.1: Obtain $x(\xi, \eta)$ and $y(\xi, \eta)$ relations for the following element.

Corner coordinates are
Corner 1 : $(5,6)$
Corner 2 : $(0,7)$
Corner 3 : $(2,0)$

Example 5.1 (cont'd)

$x=\sum_{j=1}^{3} x_{j}^{e} S_{j}=5(1-\xi-\eta)+0(\xi)+2(\eta)=5-5 \xi-3 \eta$
$y=\sum_{j=1}^{3} y_{j}^{e} S_{j}=6(1-\xi-\eta)+7(\xi)+0(\eta)=6+\xi-6 \eta$

- Every point on the master element can be mapped to a point on the actual element using these relations.
- For example point P with $(\xi, \eta)=(0.5,0.5) \mathrm{maps}$ to

$$
\begin{aligned}
& x=5-5(0.5)-3(0.5)=1 \\
& y=6+0.5-6(0.5)=3.5
\end{aligned}
$$

- Both points P and Q are the mid-points of the faces opposite to node 1.

Jacobian Transformation in 2D (cont'd)

- With the link between (x, y) and (ξ, η) coordinates, $\partial S / \partial x$ and $\partial S / \partial y$ derivatives can be linked to $\partial S / \partial \xi$ and $\partial S / \partial \eta$.

$$
\begin{aligned}
& \frac{\partial S}{\partial \xi}=\frac{\partial S}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial S}{\partial y} \frac{\partial y}{\partial \xi} \\
& \frac{\partial S}{\partial \eta}=\frac{\partial S}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial S}{\partial y} \frac{\partial y}{\partial \eta}
\end{aligned} \quad \rightarrow \quad\left\{\begin{array}{l}
\frac{\partial S}{\partial \xi} \\
\frac{\partial S}{\partial \eta}
\end{array}\right\}=\underbrace{\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{\text {Jacobian matrix }}\left\{\begin{array}{l}
\frac{\partial S}{\partial x} \\
\frac{\partial S}{\partial y}
\end{array}\right\}
$$

- In 1D Jacobian was $J^{e}=\frac{d x}{d \xi}$.
- In 2D Jacobian is a matrix.
- In general $\left[J^{e}\right]$ is different for each element of the FE mesh.

Jacobian Transformation in 2D (cont'd)

- For the integrals of slide 5-9 what we actually need is

$$
\left\{\begin{array}{c}
\frac{\partial S}{\partial x} \\
\frac{\partial S}{\partial y}
\end{array}\right\}=\underbrace{\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]}_{\text {Inverse of the }}\left\{\begin{array}{c}
\frac{\partial S}{\partial \xi} \\
\frac{\partial S}{\partial \eta}
\end{array}\right\}
$$

- Since we know x and y as a function of ξ and η, but not the other way, it is NOT practical to calculate $\left[J^{e}\right]^{-1}$ directly.
- Instead we first calculate $\left[J^{e}\right]$ and then take its inverse.

Example 5.2

e.g. Example 5.2: Obtain $\left[J^{e}\right]$ and $\left[J^{e}\right]^{-1}$ of the element that we studied in exercise 5.1.

Corner coordinates are
Corner 1 : $(5,6)$
Corner 2 : $(0,7)$
Corner 3 : $(2,0)$

$$
\left[J^{e}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ccc}
\sum x_{j}^{e} \frac{\partial S_{j}}{\partial \xi} & \sum y_{j}^{e} \frac{\partial S_{j}}{\partial \xi} \\
\sum x_{j}^{e} \frac{\partial S_{j}}{\partial \eta} & \sum y_{j}^{e} \frac{\partial S_{j}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial S_{1}}{\partial \xi} & \frac{\partial S_{2}}{\partial \xi} & \frac{\partial S_{3}}{\partial \xi} \\
\frac{\partial S_{1}}{\partial \eta} & \frac{\partial S_{2}}{\partial \eta} & \frac{\partial S_{3}}{\partial \eta}
\end{array}\right]\left[\begin{array}{cc}
x_{1}^{e} & y_{1}^{e} \\
x_{2}^{e} & y_{2}^{e} \\
x_{3}^{e} & y_{3}^{e}
\end{array}\right]
$$

- This general $\left[J^{e}\right]$ calculation formula applies to both triangular and quadrilateral elements.

Example 5.2 (cont'd)

- For a triangular element shape functions are

$$
S_{1}=1-\xi-\eta \quad, \quad S_{2}=\xi, \quad S_{3}=\eta
$$

- For a triangular element derivatives of the shape functions are

$$
\left[\begin{array}{ccc}
\frac{\partial S_{1}}{\partial \xi} & \frac{\partial S_{2}}{\partial \xi} & \frac{\partial S_{3}}{\partial \xi} \\
\frac{\partial S_{1}}{\partial \eta} & \frac{\partial S_{2}}{\partial \eta} & \frac{\partial S_{3}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

- Jacobian of the element is

$$
\left[J^{e}\right]=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 6 \\
0 & 7 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-5 & 1 \\
-3 & -6
\end{array}\right]
$$

Example 5.2 (cont'd)

- Inverse of the Jacobian matrix is

$$
\begin{gathered}
{\left[J^{e}\right]^{-1}=\frac{1}{\left|J^{e}\right|}\left[\begin{array}{cc}
J_{22}^{e} & -J_{12}^{e} \\
-J_{21}^{e} & J_{11}^{e}
\end{array}\right]} \\
\left|J^{e}\right| \\
=J_{11}^{e} J_{22}^{e}-J_{12}^{e} J_{21}^{e} \\
\\
=(-5)(-6)-(1)(-3)=33
\end{gathered} \quad \begin{aligned}
& {\left[J^{e}\right]^{-1}=\frac{1}{33}\left[\begin{array}{cc}
-6 & -1 \\
3 & -5
\end{array}\right]=\left[\begin{array}{cc}
-0.182 & 0.030 \\
0.091 & -0.152
\end{array}\right]}
\end{aligned}
$$

- Note that in 1D J^{e} was equal to the ratio of actual element's length to master element's length.
- Similarly for a 3-node triangular element $\left|J^{e}\right|$ is equal to the ratio of actual element's area to master element's area. In this exercise the area ratio is $16.5 /(0.5)=33$.

Example 5.3

e.g. Example 5.3: Obtain $\left[J^{e}\right]$ and $\left|J^{e}\right|$ of the element shown below.

> Corner coordinates are
> Corner $1:(5,6)$
> Corner $2:(0,7)$
> Corner $3:(0,0)$
> Corner $4:(2,0)$

$$
\left[J^{e}\right]=\left[\begin{array}{cccc}
\frac{\partial S_{1}}{\partial \xi} & \frac{\partial S_{2}}{\partial \xi} & \frac{\partial S_{3}}{\partial \xi} & \frac{\partial S_{4}}{\partial \xi} \\
\frac{\partial S_{1}}{\partial \eta} & \frac{\partial S_{2}}{\partial \eta} & \frac{\partial S_{3}}{\partial \eta} & \frac{\partial S_{4}}{\partial \eta}
\end{array}\right]\left[\begin{array}{ll}
x_{1}^{e} & y_{1}^{e} \\
x_{2}^{e} & y_{2}^{e} \\
x_{3}^{e} & y_{3}^{e} \\
x_{4}^{e} & y_{4}^{e}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\eta-1}{4} & \frac{1-\eta}{4} & \frac{\eta+1}{4} & \frac{-1-\eta}{4} \\
\frac{\xi-1}{4} & \frac{-\xi-1}{4} & \frac{\xi+1}{4} & \frac{1-\xi}{4}
\end{array}\right]\left[\begin{array}{ll}
5 & 6 \\
0 & 7 \\
0 & 0 \\
2 & 0
\end{array}\right]
$$

Example 5.3 (cont'd)

$$
\left[J^{e}\right]=\frac{1}{4}\left[\begin{array}{cc}
3 \eta-7 & -\eta+1 \\
3 \xi-3 & -\xi-13
\end{array}\right]
$$

- Determinant of $\left[J^{e}\right]$ is

$$
\left|J^{e}\right|=J_{11}^{e} J_{22}^{e}-J_{12}^{e} J_{21}^{e}=\frac{1}{8}(2 \xi-21 \eta+47)
$$

- Note that this time both the Jacobian matrix and its determinant are functions of ξ and η.
- Integral of $\left|J^{e}\right|$ over the master element will give the area of the actual element.

$$
\int_{\eta=-1}^{1} \int_{\xi=-1}^{1} \underbrace{\frac{1}{8}(2 \xi-21 \eta+47)}_{\left|J^{e}\right|} d \xi d \eta=23.5 \underbrace{\substack{\underbrace{2}}}_{\substack{\text { Actual element's } \\ \text { area }}}
$$

- This can be generalized as follows which will be used in GQ integration

$$
\int_{\Omega} d x d y=\int_{\Omega^{e}}\left|J^{e}\right| d \xi d \eta
$$

(True for both triangular and quadrilateral elements)

Calculation of Integrals Over a Master Element

- Now the integrals of Slide 5-9 can be evaluated on a master element using GQ.

$$
\begin{aligned}
& K_{i j}^{e}=\int_{\Omega^{e}} a\left(\frac{\partial S_{j}^{e}}{\partial x} \frac{\partial S_{i}^{e}}{\partial x}+\frac{\partial S_{j}^{e}}{\partial y} \frac{\partial S_{i}^{e}}{\partial y}\right) d \Omega, \quad F_{i}^{e}=\int_{\Omega^{e}} S_{i}^{e} f d \Omega \\
& \text { and } \\
& \text { onvert } a
\end{aligned}
$$

Use $x=\sum x_{j}^{e} S_{j}$ and $y=\sum y_{j}^{e} S_{j}$ to convert x and y of function a to ξ and η.

$$
05 \text { dilu }
$$

Same for f of F_{i}^{e}.

Gauss Quadrature Over Quadrilateral Elements

- For a quadrilateral master element both ξ and η change between -1 and 1 .
- $[-1,1]$ are the limits used in 1D GQ integration.
- Therefore for 2D quadrilateral elements 1D GQ tables can be used.
- Consider the evaluation of the following integral using NGP points in both ξ and η directions.

$$
I=\int_{\eta=-1}^{1} \int_{\xi=-1}^{1} g d \xi d \eta
$$

Sum for ξ

Combined sum

$$
W_{k}=W_{m} W_{n}
$$ for ξ and η

Gauss Quadrature Over Quadrilateral Elements (cont'd)

Gauss Quadrature Over Triangular Elements

- For a triangular master element limits for ξ and η are $[0,1]$ and $[0,1-\xi]$, respectively.

$$
\int_{\Omega^{e}} f d \xi d \eta=\int_{\xi=0}^{1} \int_{\eta=0}^{1-\xi} f d \eta d \xi
$$

- Therefore a new GQ table is necessary.

2D GQ Integration Over Triangles			
NGP	$\boldsymbol{\xi}_{\boldsymbol{k}}$	$\boldsymbol{\eta}_{\boldsymbol{k}}$	$\boldsymbol{W}_{\boldsymbol{k}}$
1	$1 / 3$	$1 / 3$	0.5
3	0.5	0.0	$1 / 6$
	0.0	0.5	$1 / 6$
	0.5	0.5	$1 / 6$
	$1 / 3$	$1 / 3$	$-27 / 96$
	0.6	0.2	$25 / 96$
	0.2	0.6	$25 / 96$
	0.2	0.2	$25 / 96$

Example 5.4

e.g. Example 5.4: Calculate the first entry of the following elemental force vector

$$
F_{i}^{e}=\int_{\Omega^{e}} x^{2} S_{i} d x d y
$$

over the following element using 4 point GQ integration.

Corner coordinates are
Corner 1 : $(0,0)$
Corner 2 : $(5,0)$
Corner 3 : $(3,2)$
Corner 4 : $(0,2)$

Example 5.4 (cont'd)

- We need to calculate

$$
F_{1}^{e}=\int_{\Omega^{e}} x^{2} S_{1} d x d y
$$

- Switching to master element coordinates the integral becomes

$$
F_{1}^{e}=\int_{-1}^{1} \int_{-1}^{1} x(\xi, \eta)^{2} \underbrace{\frac{1}{4}(1-\xi)(1-\eta)}_{S_{1}} \underbrace{\left|J^{e}\right| d \xi d \eta}_{d x d y}
$$

- We first need x as a function of ξ and η.

$$
\begin{gathered}
x=\sum_{j=1}^{4} x_{j}^{e} S_{j}=(0) S_{1}+(5) S_{2}+(3) S_{3}+(0) S_{4} \\
x=(5) \frac{1}{4}(1+\xi)(1-\eta)+(3) \frac{1}{4}(1+\xi)(1+\eta) \\
x=\frac{1}{2}(4+4 \xi-\eta-\xi \eta)
\end{gathered}
$$

Example 5.4 (cont'd)

- Next we need to calculate the Jacobian and its determinant (similar to Slide 5-23)

$$
\begin{gathered}
{\left[J^{e}\right]=\left[\begin{array}{cccc}
\frac{\eta-1}{4} & \frac{1-\eta}{4} & \frac{\eta+1}{4} & \frac{-1-\eta}{4} \\
\frac{\xi-1}{4} & \frac{-\xi-1}{4} & \frac{\xi+1}{4} & \frac{1-\xi}{4}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
5 & 0 \\
3 & 2 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
\frac{4-\eta}{2} & 0 \\
\frac{-1-\xi}{2} & 1
\end{array}\right]} \\
\left|J^{e}\right|=\left(\frac{4-\eta}{2}\right)(1)-\left(\frac{-1-\xi}{2}\right)(0)=\frac{4-\eta}{2}
\end{gathered}
$$

- The integral becomes

$$
\begin{gathered}
F_{1}^{e}=\int_{-1}^{1} \int_{-1}^{1} \underbrace{\left[\frac{1}{2}(4+4 \xi-\eta-\xi \eta)\right]^{2} \frac{1}{4}(1-\xi)(1-\eta) \frac{4-\eta}{2}}_{g(\xi, \eta)} d \xi d \eta \\
F_{1}^{e}=\int_{-1}^{1} \int_{-1}^{1} g d \xi d \eta
\end{gathered}
$$

Example 5.4 (cont'd)

- 4 point GQ over the quadrilateral master element will be

$$
F_{1}^{e}=g\left(\xi_{1}, \eta_{1}\right) W_{1}+g\left(\xi_{2}, \eta_{2}\right) W_{2}+g\left(\xi_{3}, \eta_{3}\right) W_{3}+g\left(\xi_{4}, \eta_{4}\right) W_{4}
$$

where points and weights are provided in Slide 5-27

- The result will be

$$
F_{1}^{e}=1.3320+4.971+0.1492+0.5569=6.9993
$$

Notes:

- In general $\left|J^{e}\right|$ is a function of ξ and η and it needs to be evaluated at GQ points.
- In this example we did not need $y(\xi, \eta)$ bacause f was not a function of y.
- In this example we did not calculate the inverse of $\left[J^{e}\right]$ because force vector does not contain shape function derivatives. Stiffness matrix calculation will need it.
- Is the above result exact? What is the exact value? What will 1 point and 9 point integrations give?

Calculation of $\{Q\}$

- $\{Q\}$ integrals need to be evaluated only for the real boundary faces where NBC or MBC is specified.
- Consider the following problem with a mesh of 3 elements and 6 nodes.

Calculation of $\{Q\}$ (cont'd)

- There are 4 elements faces at NBC or MBC boundaries.
- The assembled global $\{Q\}$ will be (first local node of each element is shown, the others are located in a CCW order)

$$
Q=\left\{\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3} \\
Q_{4} \\
Q_{5} \\
Q_{6}
\end{array}\right\}=\left\{\begin{array}{c}
\sqrt{Q_{1}^{1}} \\
\frac{Q_{2}^{1}+Q_{1}^{2}}{Q_{2}^{2}} \\
\frac{Q_{4}^{1}+Q_{1}^{3}}{Q_{3}^{1}+Q_{3}^{2}+Q_{2}^{3}} \\
Q_{2}^{3}
\end{array}\right\}
$$

- Q_{3}, Q_{5} and Q_{6} are not necessary because $P V$ s are known at these nodes.
- Only the circled ones are necessary.
- Note : In this example we do not have an internal node (a node that is not located at a boundary), but for those nodes sum of Q_{i}^{e} 's will be zero.

Calculation of $\{Q\}$ (cont'd)

- For the Poisson equation $\left\{Q^{e}\right\}$ is calculated as (Slide 5-9)

$$
Q_{i}^{e}=\oint_{\Gamma^{e}} S_{i} q_{n} d s
$$

- Γ^{e} is the boundary of the element and it is composed of $N E N$ straight lines.
- For a triangular element the integral can be decomposed into 3 parts.

$$
Q_{i}^{e}=\int_{f 1} S_{i} q_{n} d s+\int_{f 2} S_{i} q_{n} d s+\int_{f 3} S_{i} q_{n} d s
$$

Calculation of $\{Q\}$ (cont'd)

- Consider the 3 element problem of Slide 5-34.
- We need $Q_{1}^{1}, Q_{2}^{1}, Q_{4}^{1}, Q_{1}^{2}, Q_{1}^{3}$

NBC

$$
\begin{aligned}
& Q_{1}^{1}=\int_{f 1} S_{1} q_{n} d s+\int_{f 2} S_{1} q_{n} d s+\int_{f 3} S_{1} q_{n} d s+\int_{f 4} S_{1} q_{n} d s \\
& Q_{2}^{1}=\int_{f 1} S_{2} q_{n} d s+\int_{f 2} S_{2} q_{n} d s+\int_{f 3} S_{2} q_{n} d s+\int_{f 4} S_{2} q_{n} d s \\
& \text { No need (f2 is internal) } \quad S_{2} \text { is zero on faces } 3 \text { and } 4
\end{aligned}
$$

$$
Q_{4}^{1}=\int_{f 1} S_{4} q_{n} d s+\int_{f 2} S_{4} q_{n} d s+\int_{f 3} S_{4} q_{n} d s+\int_{f 4} S_{4} q_{n} d s
$$

$$
S_{4} \text { is zero on faces } 1 \text { and } 2 \quad \text { No need (f3 is internal) }
$$

Calculation of $\{Q\}$ (cont'd)

- $\quad \mathrm{e}=2$:

$$
Q_{1}^{2}=\int_{f 1} S_{1} q_{n} d s+\int_{f 2} S_{1} q_{n} d s+\int_{f 3} S_{1} q_{n} d s
$$

- $\mathrm{e}=3$:

$$
\begin{aligned}
& Q_{1}^{3}=\int_{f 1} s_{1} q_{n} d s+\int_{f 2} S_{1} q_{n} d s+\int_{f 3} S_{1} q_{n} d s \\
& \text { No need (f1 is } \quad S_{1} \text { is zero on face } 2
\end{aligned}
$$ internal)

- Conclusion: Boundary integrals need to be calculated only for real boundary faces where NBC or MBC is provided.

Calculation of $\{Q\}$ (cont'd)

- Consider the common and simple case of $q_{n}=$ constant.
- Let's study the calculation of

$$
Q_{1}^{1}=\int_{f 1} S_{1} q_{n} d s+\int_{f 4} S_{1} q_{n} d s
$$

- S_{1} is a 2D shape function but it reduces to a first order function over faces 1 and 4 of element 1.

Calculation of $\{Q\}$ (cont'd)

$$
\begin{gathered}
Q_{1}^{1}=\int_{f 1} S_{1} q_{n} d s+\int_{f 4} s_{1} q_{n} d s \\
Q_{1}^{1}=\int_{s=0}^{L_{f 1}^{1}}\left(1-\frac{s}{L_{f 1}^{1}}\right) q_{B} d s+\int_{s=0}^{L_{f 4}^{1}} \frac{s}{L_{f 4}^{1}} q_{L} d s \\
Q_{1}^{1}=\frac{q_{B}}{2} L_{f 1}^{1}+\frac{q_{L}}{2} L_{f 4}^{1}
\end{gathered}
$$

- Same procedure can be followed to calculate Q_{2}^{1}.

$$
\begin{aligned}
& Q_{2}^{1}=\int_{f 1} S_{2} q_{n} d s \\
& Q_{2}^{1}=\int_{f 1} \frac{s}{L_{f 1}^{1}} q_{B} d s \\
& Q_{2}^{1}=\frac{q_{B}}{2} L_{f 1}^{1}
\end{aligned}
$$

Calculation of $\{Q\}$ (cont'd)

- Calculation of Q_{4}^{1}, Q_{1}^{2} and Q_{1}^{3} follow the same procedure.

$$
Q_{4}^{1}=\frac{q_{L}}{2} L_{f 4}^{1} \quad, \quad Q_{1}^{2}=\frac{q_{B}}{2} L_{f 1}^{2} \quad, \quad Q_{1}^{3}=\frac{q_{L}}{2} L_{f 3}^{3}
$$

- Summary:
- From the bottom face of $\mathrm{e}=1$, amount of provided SV is $q_{B} L_{f 1}^{1}$ and it is divided equally to Q_{1}^{1} and Q_{2}^{1}.
- From the bottom face of $\mathrm{e}=2$, amount of provided SV is $q_{B} L_{f 1}^{2}$ and it is divided equally to Q_{1}^{2} and Q_{2}^{2}.
- From the left face of $\mathrm{e}=1$, amount of provided SV is $q_{L} L_{f 4}^{1}$ and it is divided equally to Q_{1}^{1} and Q_{4}^{1}.
- From the left face of e=3, amount of provided SV is $q_{L} L_{f 3}^{3}$ and it is divided equally to Q_{1}^{3} and Q_{3}^{3}.

Calculation of $\{Q\}$ (cont'd)

- Assembled $\{Q\}$ vector is

$$
Q=\left\{\begin{array}{c}
Q_{1} \\
Q_{2} \\
Q_{3} \\
Q_{4} \\
Q_{5} \\
Q_{6}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{q_{B}}{2} L_{f 1}^{1}+\frac{q_{L}}{2} L_{f 4}^{1} \\
\frac{q_{B}}{2} L_{f 1}^{1}+\frac{q_{B}}{2} L_{f 1}^{2} \\
Q_{3} \\
\frac{q_{L}}{2} L_{f 4}^{1}+\frac{q_{L}}{2} L_{f 3}^{3} \\
Q_{5} \\
Q_{6}
\end{array}\right\}
$$

- Note that it is not possible to evaluate Q_{3}, Q_{5} and Q_{6} exactly, and these are not necessary due to given EBC for u_{3}, u_{5} and u_{6}.

Calculation of $\{Q\}$ (cont'd)

- Question: What if q_{n} is not constant at an NBC boundary?
- Answer: Just evaluate the line integrals with the given variable q_{n}.
- Question: What if the BC is not NBC but MBC ? Consider the following case where bottom BC is MBC with constant α and β.

Calculation of $\{Q\}$ (cont'd)

$$
Q_{1}^{1}=\int_{f 1} S_{1} q_{n} d s+\int_{f 4} s_{1} q_{n} d s
$$

$$
\underset{\text { before }}{\text { Same as }}=\frac{q_{L}}{2} L_{f 4}^{1}
$$

$$
\int_{f 1}\left(1-\frac{s}{L_{f 1}^{1}}\right)\left(\alpha u_{f 1}^{1}+\beta\right) d s
$$

$$
\mathrm{MBC}, q_{n}=\alpha u+\beta
$$

$$
\begin{aligned}
& u_{f 1}^{1}=\left(1-\frac{s}{L_{f 1}^{1}}\right) u_{1}^{1}+\frac{s}{L_{f 1}^{1}} u_{2}^{1} \\
& u_{f 1}^{1}=u_{1}^{1}+\frac{u_{2}^{1}-u_{1}^{1}}{L_{f 1}^{1}} s
\end{aligned}
$$

Calculation of $\{Q\}$ (cont'd)

$$
\begin{aligned}
& Q_{1}^{1}=\int_{s=0}^{\int_{f 1}^{1}\left(1-\frac{s}{L_{f 1}^{1}}\right)\left[\alpha\left(u_{1}^{1}+\frac{u_{2}^{1}-u_{1}^{1}}{L_{f 1}^{1}} s\right)+\beta\right] d s+\frac{q_{L}}{2} L_{f 4}^{1}} \\
& Q_{1}^{1}=\underbrace{\frac{\beta}{2} L_{f 1}^{1}+\frac{\alpha L_{f 1}^{1}}{3} u_{1}^{1}+\frac{\alpha L_{f 1}^{1}}{6} u_{2}^{1}}_{\begin{array}{c}
\text { Contribution of the MBC } \\
\text { of the bottom face }
\end{array}}+\underbrace{\frac{q_{L}}{2} L_{f 4}^{1}}_{\begin{array}{c}
\text { Contribution of the } \\
\text { NBC of the left face }
\end{array}}
\end{aligned}
$$

- To calculate Q_{2}^{1} a similar integral is evaluated but this time with S_{2}.

$$
Q_{2}^{1}=\int_{s=0}^{L_{f 1}^{1}}\left(\frac{s}{L_{f 1}^{1}}\right)\left[\alpha\left(u_{1}^{1}+\frac{u_{2}^{1}-u_{1}^{1}}{L_{f 1}^{1}} s\right)+\beta\right] d s
$$

$$
Q_{2}^{1}=\frac{\beta}{2} L_{f 1}^{1}+\frac{\alpha L_{f 1}^{1}}{6} u_{1}^{1}+\frac{\alpha L_{f 1}^{1}}{3} u_{2}^{1}
$$

Calculation of $\{Q\}$ (cont'd)

- Calculation of Q_{1}^{2} is just the same as Q_{1}^{1}.

$$
Q_{1}^{2}=\frac{\beta}{2} L_{f 1}^{2}+\frac{\alpha L_{f 1}^{2}}{3} u_{1}^{2}+\frac{\alpha L_{f 1}^{2}}{6} u_{2}^{2}
$$

- Assembled $\{Q\}$ is

Example 5.5

e.g. Example 5.5: Determine the temperture distribution over the following 2D geometry. Obtain unknown nodal temperatures. Thermal conductivity of the medium is $1.3 \mathrm{~W} /(\mathrm{mK})$.

First local corners of the elements are shown with " 1 "s inside the elements.

Node coordinates [m]
Node 1 : $(0,0)$
Node 2 : $0.5,0)$
Node 3 : $(1,0)$
Node 4 : $(0,0.5)$
Node 5 : $(0.5,0.5)$
Node 6 : $(0,1)$

Example 5.5 (cont'd)

- Governing DE is

$$
-\nabla \cdot(k \nabla T)=0
$$

- Elemental weak form (Slide 5-6) is

$$
\begin{aligned}
& \int_{\Omega^{e}} k\left(\frac{\partial T}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial T}{\partial y} \frac{\partial w}{\partial y}\right) d \Omega=\int_{\Omega^{e}} w f d \Omega+\oint_{\Gamma^{e}} w q_{n} d \Gamma \\
& K_{i j}^{e}=\int_{\Omega^{e}} k\left(\frac{\partial S_{i}^{e}}{\partial x} \frac{\partial S_{j}^{e}}{\partial x}+\frac{\partial S_{i}^{e}}{\partial y} \frac{\partial S_{j}^{e}}{\partial y}\right) d \Omega \\
& F_{i}^{e}=\int_{\Omega^{e}} f S_{i} d \Omega
\end{aligned}
$$

- We can start by calculating the Jacobian matrix of each element.

Example 5.5 (cont'd)

- e=1: $\left[J^{1}\right]=\left[\begin{array}{lll}-1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 0.5 & 0 \\ 0 & 0.5\end{array}\right]=\left[\begin{array}{cc}0.5 & 0 \\ 0 & 0.5\end{array}\right]$

$$
\left|J^{1}\right|=0.25
$$

$$
\left[J^{1}\right]^{-1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

- $\mathrm{e}=2$: $\left[J^{2}\right]=\left[\begin{array}{lll}-1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}0.5 & 0.5 \\ 0 & 0 \\ 0.5 & 0\end{array}\right]=\left[\begin{array}{cc}-0.5 & 0 \\ 0 & -0.5\end{array}\right]$

$$
\left|J^{2}\right|=0.25
$$

$$
\left[J^{2}\right]^{-1}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

- Elements 3 and 4 have the same shape and size as element 1 and their first local node is at the right angle corner. Therefore their Jacobian matrices are the same.

$$
\left[J^{3}\right]=\left[J^{4}\right]=\left[J^{1}\right]
$$

Example 5.5 (cont'd)

- Elemental systems can now be calculated.

$$
\begin{gathered}
K_{i j}^{e}=\int_{\Omega^{e}} k\left(\frac{\partial S_{i}^{e}}{\partial x} \frac{\partial S_{j}^{e}}{\partial x}+\frac{\partial S_{i}^{e}}{\partial y} \frac{\partial S_{j}^{e}}{\partial y}\right) d \Omega \\
K_{i j}^{e}=\int_{\Omega^{e}} k\left[\left(\frac{\partial S_{i}}{\partial \xi}\left(J^{e}\right)_{11}^{-1}+\frac{\partial S_{i}}{\partial \eta}\left(J^{e}\right)_{12}^{-1}\right)\left(\frac{\partial S_{j}}{\partial \xi}\left(J^{e}\right)_{11}^{-1}+\frac{\partial S_{j}}{\partial \eta}\left(J^{e}\right)_{12}^{-1}\right)\right. \\
\left.+\left(\frac{\partial S_{i}}{\partial \xi}\left(J^{e}\right)_{21}^{-1}+\frac{\partial S_{i}}{\partial \eta}\left(J^{e}\right)_{22}^{-1}\right)\left(\frac{\partial S_{j}}{\partial \xi}\left(J^{e}\right)_{21}^{-1}+\frac{\partial j}{\partial \eta}\left(J^{e}\right)_{22}^{-1}\right)\right]\left|J^{e}\right| d \Omega \\
F_{i}^{e}=\{0\}
\end{gathered}
$$

$\mathrm{e}=1$:

$$
K^{1}=\left[\begin{array}{ccc}
1.3 & -0.65 & -0.65 \\
-0.65 & 0.65 & 0 \\
-0.65 & 0 & 0.65
\end{array}\right]
$$

Example 5.5 (cont'd)

$\mathrm{e}=2$:

$$
K^{2}=\left[\begin{array}{ccc}
1.3 & -0.65 & -0.65 \\
-0.65 & 0.65 & 0 \\
-0.65 & 0 & 0.65
\end{array}\right]
$$

$\mathrm{e}=3$ and 4 :

$$
\left[K^{3}\right]=\left[K^{4}\right]=\left[K^{1}\right]
$$

- Now the $\{Q\}$ vector should be calculated.
- Only contribution will come from the two MBC faces at the bottom.

Example 5.5 (cont'd)

Example 5.5 (cont'd)

$$
Q=\left\{\begin{array}{c}
\frac{100}{2} 0.5+\frac{-5(0.5)}{3} T_{1}+\frac{-5(0.5)}{6} T_{2} \\
\frac{100}{2} 0.5+\frac{-5(0.5)}{6} T_{1}+\frac{-5(0.5)}{3} T_{2}+\frac{100}{2} 0.5+\frac{-5(0.5)}{3} T_{2}+\frac{-5(0.5)}{6} T_{3} \\
Q_{3} \\
0 \\
Q_{5} \\
Q_{6}
\end{array}\right\}
$$

$$
Q=\left\{\begin{array}{c}
25-0.8333 T_{1}-0.4167 T_{2} \\
50-0.4167 T_{1}-1.6667 T_{2}-0.4167 T_{3} \\
Q_{3} \\
0 \\
Q_{5} \\
Q_{6}
\end{array}\right\}
$$

Example 5.5 (cont'd)

- Global system is

$$
\left[\begin{array}{cccccc}
1.3 & -0.65 & 0 & -0.65 & 0 & 0 \\
& 2.6 & -0.65 & 0 & -1.3 & 0 \\
& 0.65 & 0 & 0 & 0 \\
& & 2.6 & -1.3 & -0.65 \\
& & & 2.6 & 0 \\
& \text { sym. } & & & & 0.65
\end{array}\right]\left\{\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{6}
\end{array}\right\}=\left\{\begin{array}{c}
25-0.8333 T_{1}-0.4167 T_{2} \\
50-0.4167 T_{1}-1.6667 T_{2}-0.4167 T_{3} \\
Q_{3} \\
0 \\
Q_{5} \\
Q_{6}
\end{array}\right\}
$$

- Take the unknonws due to MBC from the $\{Q\}$ vector into the $[K]$ matrix.

$$
\left[\begin{array}{cccccc}
2.1333 & -0.2333 & 0 & -0.65 & 0 & 0 \\
-0.2333 & 4.2667 & -0.2333 & 0 & -1.3 & 0 \\
0 & -0.65 & 0.65 & 0 & 0 & 0 \\
-0.65 & 0 & 0 & 2.6 & -1.3 & -0.65 \\
0 & -1.3 & 0 & -1.3 & 2.6 & 0 \\
0 & 0 & 0 & -0.65 & 0 & 0.65
\end{array}\right]\left\{\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{6}
\end{array}\right\}=\left\{\begin{array}{c}
25 \\
50 \\
Q_{3} \\
0 \\
Q_{5} \\
Q_{6}
\end{array}\right\}
$$

Example 5.5 (cont'd)

- Apply reduction for the known T_{3}, T_{5} and T_{6}.

$$
\left[\begin{array}{ccc}
2.1333 & -0.2333 & -0.65 \\
-0.2333 & 4.2667 & 0 \\
-0.65 & 0 & 2.6
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{4}
\end{array}\right\}=\left\{\begin{array}{c}
25 \\
50+0.2333(100)+1.3(100) \\
0+1.3(100)++0.65(100)
\end{array}\right\}
$$

- As seen MBC's do not destroy the symmetry of the reduced system.
- Solve for the unknown primary variables

$$
\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{4}
\end{array}\right\}=\left\{\begin{array}{l}
43.3 \\
50.0 \\
85.8
\end{array}\right\}^{\circ} \mathrm{C}
$$

- Constant T lines should be parallel to the EBC boundary and they should be perpendicular to the insulated boundary.

